2N3904 / MMBT3904 / PZT3904
NPN General Purpose Amplifier

Features

- This device is designed as a general purpose amplifier and switch.
- The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier.

Absolute Maximum Ratings* $T_a = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CEO}</td>
<td>Collector-Emitter Voltage</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>V_{CBO}</td>
<td>Collector-Base Voltage</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>V_{EBO}</td>
<td>Emitter-Base Voltage</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current - Continuous</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>T_J, T_{stg}</td>
<td>Operating and Storage Junction Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:
1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $T_a = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_D</td>
<td>Total Device Dissipation</td>
<td>625</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>Derate above 25°C</td>
<td>5.0</td>
<td>mW/°C</td>
</tr>
<tr>
<td>R_{JUC}</td>
<td>Thermal Resistance, Junction to Case</td>
<td>83.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JUA}</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>200</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>357</td>
<td></td>
</tr>
</tbody>
</table>

* Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06".
** Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm².
Electrical Characteristics

$T_a = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{\text{BR}CEO}$</td>
<td>Collector-Emitter Breakdown Voltage</td>
<td>$I_C = 1.0mA, I_B = 0$</td>
<td>40</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{\text{BR}CBO}$</td>
<td>Collector-Base Breakdown Voltage</td>
<td>$I_C = 10\mu A, I_C = 0$</td>
<td>60</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{\text{BR}EBO}$</td>
<td>Emitter-Base Breakdown Voltage</td>
<td>$I_E = 10\mu A, I_E = 0$</td>
<td>6.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{BL}</td>
<td>Base Cutoff Current</td>
<td>$V_{CE} = 30V, V_{EB} = 3V$</td>
<td>50</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>I_{CEX}</td>
<td>Collector Cutoff Current</td>
<td>$V_{CE} = 30V, V_{EB} = 3V$</td>
<td>50</td>
<td>nA</td>
<td></td>
</tr>
</tbody>
</table>

ON CHARACTERISTICS*

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{FE}</td>
<td>DC Current Gain</td>
<td>$I_C = 0.1mA, V_{CE} = 1.0V$</td>
<td>40</td>
<td>70</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = 10mA, V_{CE} = 1.0V$</td>
<td>100</td>
<td>300</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CE(sat)}$</td>
<td>Collector-Emitter Saturation Voltage</td>
<td>$I_C = 10mA, I_B = 1.0mA$</td>
<td>0.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = 50mA, I_B = 5.0mA$</td>
<td>0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{BE(sat)}$</td>
<td>Base-Emitter Saturation Voltage</td>
<td>$I_C = 10mA, I_B = 1.0mA$</td>
<td>0.65</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = 50mA, I_B = 5.0mA$</td>
<td>0.85</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

SMALL SIGNAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_T</td>
<td>Current Gain - Bandwidth Product</td>
<td>$I_C = 10mA, V_{CE} = 20V, f = 100MHz$</td>
<td>300</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>C_{oBo}</td>
<td>Output Capacitance</td>
<td>$V_{CB} = 0.5V, I_E = 0, f = 1.0MHz$</td>
<td>4.0</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>C_{iBo}</td>
<td>Input Capacitance</td>
<td>$V_{EB} = 0.5V, I_C = 0, f = 1.0MHz$</td>
<td>8.0</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>NF</td>
<td>Noise Figure</td>
<td>$I_C = 100\mu A, V_{CE} = 5.0V, R_S = 1.0k\Omega, f = 10Hz to 15.7kHz$</td>
<td>5.0</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

SWITCHING CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_d</td>
<td>Delay Time</td>
<td>$V_{CC} = 3.0V, V_{BE} = 0.5V$</td>
<td>35</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_r</td>
<td>Rise Time</td>
<td>$I_C = 10mA, I_{B1} = 1.0mA$</td>
<td>35</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_s</td>
<td>Storage Time</td>
<td>$V_{CC} = 3.0V, I_C = 10mA, I_{B1} = I_{B2} = 1.0mA$</td>
<td>200</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_f</td>
<td>Fall Time</td>
<td>$V_{CC} = 3.0V, I_C = 10mA, I_{B1} = I_{B2} = 1.0mA$</td>
<td>50</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

* Pulse Test: Pulse Width $\leq 300\mu s$, Duty Cycle $\leq 2.0\%$

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Marking</th>
<th>Package</th>
<th>Packing Method</th>
<th>Pack Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3904BU</td>
<td>2N3904</td>
<td>TO-92</td>
<td>BULK</td>
<td>10000</td>
</tr>
<tr>
<td>2N3904TA</td>
<td>2N3904</td>
<td>TO-92</td>
<td>AMMO</td>
<td>2000</td>
</tr>
<tr>
<td>2N3904TAR</td>
<td>2N3904</td>
<td>TO-92</td>
<td>AMMO</td>
<td>2000</td>
</tr>
<tr>
<td>2N3904TF</td>
<td>2N3904</td>
<td>TO-92</td>
<td>TAPE REEL</td>
<td>2000</td>
</tr>
<tr>
<td>2N3904TFR</td>
<td>2N3904</td>
<td>TO-92</td>
<td>TAPE REEL</td>
<td>2000</td>
</tr>
<tr>
<td>MMBT3904</td>
<td>1A</td>
<td>SOT-23</td>
<td>TAPE REEL</td>
<td>3000</td>
</tr>
<tr>
<td>MMBT3904_D87Z</td>
<td>1A</td>
<td>SOT-23</td>
<td>TAPE REEL</td>
<td>10000</td>
</tr>
<tr>
<td>PZT3904</td>
<td>3904</td>
<td>SOT-223</td>
<td>TAPE REEL</td>
<td>2500</td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

Typical Pulsed Current Gain vs Collector Current

Collector-Emitter Saturation Voltage vs Collector Current

Base-Emitter Saturation Voltage vs Collector Current

Base-Emitter ON Voltage vs Collector Current

Collector-Cutoff Current vs Ambient Temperature

Capacitance vs Reverse Bias Voltage

Typical Pulsed Current Gain

Collector-Emitter Saturation Voltage

Base-Emitter Saturation Voltage

Base-Emitter ON Voltage

Collector-Cutoff Current

Capacitance
Typical Performance Characteristics (continued)

Noise Figure vs Frequency

Noise Figure vs Source Resistance

Current Gain and Phase Angle vs Frequency

Power Dissipation vs Ambient Temperature

Turn-On Time vs Collector Current

Rise Time vs Collector Current
Typical Performance Characteristics (continued)

Storage Time vs Collector Current

Fall Time vs Collector Current

Current Gain

Output Admittance

Input Impedance

Voltage Feedback Ratio

© 2011 Fairchild Semiconductor Corporation www.fairchildsemi.com
Test Circuits

FIGURE 1: Delay and Rise Time Equivalent Test Circuit

FIGURE 2: Storage and Fall Time Equivalent Test Circuit
TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

- 2Cool™
- AcculPower™
- Auto-SPM™
- AX-CAP™
- BiSiC®
- Build it Now™
- CorePLUS™
- CorePOWER™
- CROSSVOLT™
- CTL™
- Current Transfer Logic™
- DEUXPEED®
- Dual Cool™
- EcoSpark®
- EfficientMax™
- ESRO™
- FastCore™
- FETBench™
- FlashWriter®
- FPS™
- F-PFS™
- FRFET™
- Global Power Resources™
- Green FPS™
- Green FPS e-Series™
- Gmax™
- GTO™
- IntelliMAX™
- ISOPLANAR™
- Making Small Speakers Sound Louder and Better™
- MegaBuck™
- MICROCOUPLER™
- MicroFET™
- MicroPak™
- MillerDrive™
- MotionMax™
- Motion-SPM™
- mWSaver™
- OptoHi™
- OPTOLOGIC®
- OPTOPLANAR®
- PDP SPM™
- Power-SPM™
- PowerTrench™
- PowerXS™
- Programmable Active Droop™
- QuantumFET™
- QS™
- Quiet Series™
- RapidConfigure™
- Saving our world, 1mW/W/kW at a time™
- SignalWise™
- SmartMax™
- SMART START™
- SPM™
- STEALTH™
- SuperFET™
- SuperSOT™
- SuperSOT™-3
- SuperSOT™-6
- SuperSOT™-8
- SupreMOS®
- SyncFET™
- Sync-Lock™
- TinyBoost™
- TinyBuck™
- TinyCalc™
- TinyLogic™
- TinyOPTO™
- TinyPower™
- TinyPWM™
- TinyWire™
- TrifSIC™
- TrueFault Detect™
- µSerDes™
- Ultra FRFET™
- UniFET™
- VOC™
- VisualMax™
- VoltagePlus™
- XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES TO ANY PRODUCTS HEREIN WITHOUT FURTHER NOTICE TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Definition of Terms</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>