Solutions to Complex Arithmetic Practice Problems

Rectangular to polar problem set:

To convert to polar form, must find magnitude and phase.

1. mag. =
$$\sqrt{(18)^2 + (15)^2} = 23.4$$
 phase = $\tan^{-1}\left(\frac{15}{18}\right) = 0.695$ rad
 $\rightarrow 18 + j15 = 23.4e^{j0.695} = 23.4\angle 39.8^\circ$

2. mag. =
$$\sqrt{(-3)^2 + (-21)^2} = 21.2$$
 phase = $\tan^{-1}\left(\frac{-21}{-3}\right) = 1.43 + \pi = 4.57$ rad

(Note that some calculators don't place the result of the inverse tangent function in the correct quadrant when the real part is negative.)

$$\rightarrow -3 - j21 = 21.2e^{j4.57} = 21.2\angle -98^{\circ}$$

3. mag.
$$= \sqrt{(-3)^2 + (21)^2} = 21.2$$
 phase $= \tan^{-1} \left(\frac{21}{-3}\right) = -1.43 + \pi = 1.71$ rad
 $\rightarrow -3 + j21 = 21.2 \le j^{1.71} = 21.2 \le 98^{\circ}$

4. mag.
$$= \sqrt{a^2 + b^2}$$
 phase $= \tan^{-1} \left(\frac{b}{a}\right)$
 $\to a + jb = \sqrt{a^2 + b^2} e^{\tan^{-1}(b/a)} = \sqrt{a^2 + b^2} \angle \tan^{-1}(b/a)$

5. mag. = $\sqrt{\cos^2 \omega t + \sin^2 \omega t} = 1$ phase = $\tan^{-1} \left(\frac{\sin \omega t}{\cos \omega t} \right) = \tan^{-1} (\tan \omega t) = \omega t$ $\rightarrow \cos \omega t + j \sin \omega t = e^{j\omega t}$ (Euler's formula!)

6. mag.
$$= \sqrt{\sin^2 \omega t + \cos^2 \omega t} = 1$$

phase $= \tan^{-1} \left(\frac{\cos \omega t}{\sin \omega t} \right) = \tan^{-1} \left[\frac{\cos(-\omega t)}{\sin(\omega t)} \right] = \tan^{-1} \left[\frac{\sin(-\omega t + \pi/2)}{\cos(\omega t - \pi/2)} \right] = \tan^{-1} \left[\frac{\sin(\pi/2 - \omega t)}{\cos(\pi/2 - \omega t)} \right]$
 $= \tan^{-1} \left[\tan(\pi/2 - \omega t) \right] = \pi/2 - \omega t$
 $\rightarrow \sin \omega t + j \cos \omega t = e^{j(\pi/2 - \omega t)} = 1 \angle \left(90^\circ - \omega t \frac{360^\circ}{2\pi} \right)$ (this is correct phasor form)
this is also equal to $e^{j(\pi/2 - \omega t)} = e^{j\pi/2} e^{-j\omega t} = j e^{-j\omega t}$

7. mag. =
$$\sqrt{9^2 \cos^2 \omega t + 3^2 \sin^2 \omega t} = \sqrt{81 (1 - \sin^2 \omega t) + 9 \sin^2 \omega t} = \sqrt{81 - 72 \sin^2 \omega t}$$

(magnitude varies between 3 and 9, depending on the time t)

phase =
$$\tan^{-1}\left(\frac{3\sin\omega t}{9\cos\omega t}\right) = \tan^{-1}\left(\frac{1}{3}\tan\omega t\right) \neq \frac{1}{3}\omega t$$

(phase angle does not vary linearly with time as in the case of $e^{j\omega t}$)

Polar to rectangular problem set:

1.
$$8e^{-j0.12} = 8 \left[\cos(-0.12) + j \sin(-0.12) \right] = 8 \left[\cos(0.12) - j \sin(0.12) \right] = 7.94 - j0.096$$

2.
$$14\angle 132^\circ = 14 \left[\cos(132^\circ) + j\sin(132^\circ)\right] = -9.37 + j10.4$$

3.
$$-6 \angle -85^\circ = -6 \left[\cos(-85^\circ) + j \sin(-85^\circ) \right] = -6 \left[\cos(85^\circ) - j \sin(85^\circ) \right] - 0.523 + j5.98$$

4.
$$Ae^{j\omega t} = A \ (\cos \omega t + j \sin \omega t) = A \cos \omega t + j A \sin \omega t$$

5.
$$Be^{-j(\omega t + \pi/6)} = B \left[\cos(-\omega t - \pi/6) + j \sin(-\omega t - \pi/6) \right]$$

= $B \left[\cos(\omega t + \pi/6) - j \sin(\omega t + \pi/6) \right] = B \cos(\omega t + \pi/6) - jB \sin(\omega t + \pi/6)$

6.
$$15e^{j(\omega t - \pi/2)} = 15e^{-j\pi/2}e^{j\omega t} = -j15e^{j\omega t} = -j15(\cos \omega t + j\sin \omega t)$$

= $-j15\cos \omega t - j^2 15\sin \omega t = 15\sin \omega t - j15\cos \omega t$

7. $e^{-j3\pi/2} = \cos\left(\frac{-3\pi}{2}\right) + j\sin\left(\frac{-3\pi}{2}\right) = 0 + j = j$

Express in proper polar form:

Proper polar form requires a complex number to be expressed in terms of a positive magnitude and a phase angle (phase can be expressed either in exponential form or in angular form; that is, either "mag $e^{j \text{ phase}}$ " or "mag \angle phase").

1.
$$-10e^{-j3\pi/2} = 10(-1)e^{-j3\pi/2} = 10e^{j\pi}e^{-j3\pi/2} = 10e^{j(\pi-3\pi/2)} = 10e^{-j\pi/2}$$

or $10e^{-j\pi}e^{-j3\pi/2} = 10e^{j(-\pi-3\pi/2)} = 10e^{-j5\pi/2} = 10e^{-j\pi/2} = 10e^{-j\pi/2}$

The usual practice is to give phase values in the range $-\pi$ to π . Note that $e^{j\pi} = \cos(\pi) + j\sin(\pi) = -1 + j0 = -1$ and that

$$e^{-j\pi} = \cos(-\pi) + j\sin(-\pi) = \cos(\pi) - j\sin(\pi) = -1 \ (\pi \text{ rad} = 180^\circ).$$

Also note that $e^{j2\pi} = e^{-j2\pi} = 1.$

2. $Be^{-j\omega t - \alpha t} = Be^{-j\omega t}e^{-\alpha t} = Be^{-\alpha t}e^{-j\omega t}$

Note that $-j\omega t - \alpha t$ does not represent a phase angle because it contains a real part $(-\alpha t)$.

The magnitude in this case $(Be^{-\alpha t})$ is time-varying, which is okay.

Find real and imaginary parts:

1. $\operatorname{Re}\{8e^{-j0.12}\} = \operatorname{Re}\{7.94 - j0.096\} = 7.94$

The result 7.94 - j0.096 is from the earlier polar-to-rectangular problem set.

 $\operatorname{Im}\{8e^{-j0.12}\} = \operatorname{Im}\{7.94 - j0.096\} = -0.096$

2. $\operatorname{Re}\{14\angle 132^\circ\} = \operatorname{Re}\{-9.37 + j10.4\} = -9.37$

The result -9.37 + j10.4 is from the earlier polar-to-rectangular problem set.

 $\operatorname{Im}\{14\angle 132^{\circ}\} = \operatorname{Im}\{-9.37 + j10.4\} = 10.4$

- 3. $\operatorname{Re}\{2\} = \operatorname{Re}\{2+j0\} = 2$ $\operatorname{Im}\{2\} = 0$
- 4. $\operatorname{Re}\{j15\} = \operatorname{Re}\{0+j15\} = 0$ $\operatorname{Im}\{j15\} = 15$
- 5. $\operatorname{Re}\{\sin \omega t\} = \operatorname{Re}\{\sin \omega t + j0\} = \sin \omega t$ $\operatorname{Im}\{\sin \omega t\} = 0$
- 6. $\operatorname{Re}\{j\cos\omega t\} = \operatorname{Re}\{0+j\cos\omega t\} = 0$ $\operatorname{Im}\{j\cos\omega t\} = \cos\omega t$
- 7. Re{ $x^2 + y^2 + j2xy$ } = $x^2 + y^2$ Im{ $x^2 + y^2 + j2xy$ } = 2xy

Express in proper rectangular form:

1. j5(-3+j20) = (j5)(-3) + (j5)(j20) = -j15 - 100 = -100 - j15

Proper form is to put the real part on the left and the imaginary part on the right.

3.
$$(j\beta + \alpha)^2 = (j\beta + \alpha)(j\beta + \alpha) = (j\beta)(j\beta) + 2(j\beta\alpha) + \alpha^2$$

= $-\beta^2 + j2\alpha\beta + \alpha^2 = \alpha^2 - \beta^2 + j2\alpha\beta$

The real part is $\alpha^2 - \beta^2$, and the imaginary part is $2\alpha\beta$.

Find magnitudes and phases:

1.
$$e^{-j\pi/2} = 1e^{-j\pi/2}$$

By inspection, the magnitude is 1 $(|e^{-j\pi/2}| = 1)$, and the phase is $-\pi/2$ (or $3\pi/2$, since $e^{-j\pi/2} = e^{j3\pi/2}$).

2. $5e^{-j\pi}$

By inspection, the magnitude is 5 $(|5e^{-j\pi}| = 5)$, and the phase is $-\pi$ (or π). Also, note that $5e^{-j\pi} = 5e^{j\pi} = 5(-1) = -5$.

3.
$$-9e^{-j\pi/3} = 9(-1)e^{-j\pi/3} = 9e^{j\pi}e^{-j\pi/3} = 9e^{j(\pi-\pi/3)} = 9e^{j2\pi/3}$$

or $-9e^{-j\pi/3} = 9e^{-j\pi}e^{-j\pi/3} = 9e^{j(-\pi-\pi/3)} = 9e^{-j4\pi/3}$
 $\rightarrow |-9e^{-j\pi/3}| = 9$ and
phase $\{-9e^{-j\pi/3}\} = 2\pi/3$ or $-4\pi/3$

Note that the angle $2\pi/3$ (120°) is equivalent to the angle $-4\pi/3$ (-240°).

4. $|2+j3| = \sqrt{(2)^2 + (3)^2} = 3.61$ phase $\{2+j3\} = \tan^{-1}(3/2) = 0.983$ (56.3°)

Thus, $2 + j3 = 3.61e^{j0.983} = 3.61 \angle 56.3^{\circ}$

- 5. $|-j8| = \sqrt{(0)^2 + (-8)^2} = 8$ phase $\{-j8\} = \tan^{-1}(-8/0) = \tan^{-1}(-\infty) = -\pi/2 \ (-90^\circ)$
- 6. $|jFe^{j0.83\pi}| = |j||F||e^{j0.83\pi}|$

(The magnitude of a product is equal to the product of the magnitudes.)

Since
$$|j| = 1$$
 and $|e^{j0.83\pi}| = 1$, then $|jFe^{j0.83\pi}| = |F| = F$

To find the phase, put the expression into proper polar form (using $j = e^{j\pi/2}$):

 $jFe^{j0.83\pi} = Fe^{j\pi/2}e^{j0.83\pi} = Fe^{j(\pi/2+0.83\pi)} = Fe^{j1.33\pi}$ \rightarrow phase{ $jFe^{j0.83\pi}$ } = 1.33 π (239.4°) by inspection

The phase can also be expressed as $1.33\pi - 2\pi = -0.67\pi \ (-120.6^{\circ})$.

7. The solution is very similar to that of Problem 6. $|jFe^{jg}| = |j||F| |e^{jg}| = (1)(F)(1) = F$

To find the phase, put the expression into proper polar form:

 $jFe^{jg} = Fe^{j\pi/2}e^{jg} = Fe^{j(\pi/2+g)}$ \rightarrow phase $\{jFe^{jg}\} = \pi/2 + g$ by inspection

8. |-15| = 15

Put the expression into proper polar form:

$$-15 = 15(-1) = 15e^{\pm j\pi}$$

$$\rightarrow \text{phase}\{-15\} = \pi \text{ or } -\pi \ (\pm 180^\circ)$$

9. $j = e^{j\pi/2}$, so |j| = 1

The phase is $\pi/2$ by inspection.

Find complex conjugates:

To find the complex conjugate of a complex number or expression, simply replace every occurrence of j with -j. The conjugate of a sum is equal to the sum of the conjugates, and the conjugate of a product is equal to the product of the conjugates.

- 1. $j^* = -j$
- 2. $(2+j7-Fe^{jg})^* = 2-j7-Fe^{-jg}$
- 3. $(3 \times 10^{-6})^* = 3 \times 10^{-6}$

Real numbers are unaffected by complex conjugation.

- 4. $[Re\{5+j15\}]^* = (5)^* = 5$
- 5. $[Im \{5+j15\}]^* = (15)^* = 15$
- 6. $\left[-j832e^{-0.3z}e^{(7-j18)t}\right]^* = j832e^{-0.3z}e^{(7+j18)t}$
- 7. $[8e^{-j0.12}(0.3+j6.1)]^* = 8e^{j0.12}(0.3-j6.1)$