## Solutions to Complex Arithmetic Practice Problems

$\underline{\text { Rectangular to polar problem set: }}$
To convert to polar form, must find magnitude and phase.

1. mag. $=\sqrt{(18)^{2}+(15)^{2}}=23.4 \quad$ phase $=\tan ^{-1}\left(\frac{15}{18}\right)=0.695 \mathrm{rad}$
$\rightarrow 18+j 15=23.4 e^{j 0.695}=23.4 \angle 39.8^{\circ}$
2. mag. $=\sqrt{(-3)^{2}+(-21)^{2}}=21.2 \quad$ phase $=\tan ^{-1}\left(\frac{-21}{-3}\right)=1.43+\pi=4.57 \mathrm{rad}$
(Note that some calculators don't place the result of the inverse tangent function in the correct quadrant when the real part is negative.)

$$
\rightarrow-3-j 21=21.2 e^{j 4.57}=21.2 \angle-98^{\circ}
$$

3. mag. $=\sqrt{(-3)^{2}+(21)^{2}}=21.2 \quad$ phase $=\tan ^{-1}\left(\frac{21}{-3}\right)=-1.43+\pi=1.71 \mathrm{rad}$ $\rightarrow-3+j 21=21.2 e^{j 1.71}=21.2 \angle 98^{\circ}$
4. mag. $=\sqrt{a^{2}+b^{2}} \quad$ phase $=\tan ^{-1}\left(\frac{b}{a}\right)$

$$
\rightarrow a+j b=\sqrt{a^{2}+b^{2}} e^{\tan ^{-1}(b / a)}=\sqrt{a^{2}+b^{2}} \angle \tan ^{-1}(b / a)
$$

5. mag. $=\sqrt{\cos ^{2} \omega t+\sin ^{2} \omega t}=1 \quad$ phase $=\tan ^{-1}\left(\frac{\sin \omega t}{\cos \omega t}\right)=\tan ^{-1}(\tan \omega t)=\omega t$ $\rightarrow \cos \omega t+j \sin \omega t=e^{j \omega t}$ (Euler's formula!)
6. mag. $=\sqrt{\sin ^{2} \omega t+\cos ^{2} \omega t}=1$

$$
\begin{aligned}
& \text { phase }=\tan ^{-1}\left(\frac{\cos \omega t}{\sin \omega t}\right)=\tan ^{-1}\left[\frac{\cos (-\omega t)}{\sin (\omega t)}\right]=\tan ^{-1}\left[\frac{\sin (-\omega t+\pi / 2)}{\cos (\omega t-\pi / 2)}\right]=\tan ^{-1}\left[\frac{\sin (\pi / 2-\omega t)}{\cos (\pi / 2-\omega t)}\right] \\
& \quad=\tan ^{-1}[\tan (\pi / 2-\omega t)]=\pi / 2-\omega t
\end{aligned}
$$

$$
\rightarrow \sin \omega t+j \cos \omega t=e^{j(\pi / 2-\omega t)}=1 \angle\left(90^{\circ}-\omega t \frac{360^{\circ}}{2 \pi}\right) \text { (this is correct phasor form) }
$$

this is also equal to $e^{j(\pi / 2-\omega t)}=e^{j \pi / 2} e^{-j \omega t}=j e^{-j \omega t}$
7. mag. $=\sqrt{9^{2} \cos ^{2} \omega t+3^{2} \sin ^{2} \omega t}=\sqrt{81\left(1-\sin ^{2} \omega t\right)+9 \sin ^{2} \omega t}=\sqrt{81-72 \sin ^{2} \omega t}$
(magnitude varies between 3 and 9 , depending on the time $t$ )
phase $=\tan ^{-1}\left(\frac{3 \sin \omega t}{9 \cos \omega t}\right)=\tan ^{-1}\left(\frac{1}{3} \tan \omega t\right) \neq \frac{1}{3} \omega t$
(phase angle does not vary linearly with time as in the case of $e^{j \omega t}$ )

Polar to rectangular problem set:

1. $8 e^{-j 0.12}=8[\cos (-0.12)+j \sin (-0.12)]=8[\cos (0.12)-j \sin (0.12)]=7.94-j 0.096$
2. $14 \angle 132^{\circ}=14\left[\cos \left(132^{\circ}\right)+j \sin \left(132^{\circ}\right)\right]=-9.37+j 10.4$
3. $-6 \angle-85^{\circ}=-6\left[\cos \left(-85^{\circ}\right)+j \sin \left(-85^{\circ}\right)\right]=-6\left[\cos \left(85^{\circ}\right)-j \sin \left(85^{\circ}\right)\right]-0.523+j 5.98$
4. $A e^{j \omega t}=A(\cos \omega t+j \sin \omega t)=A \cos \omega t+j A \sin \omega t$
5. $B e^{-j(\omega t+\pi / 6)}=B[\cos (-\omega t-\pi / 6)+j \sin (-\omega t-\pi / 6)]$

$$
=B[\cos (\omega t+\pi / 6)-j \sin (\omega t+\pi / 6)]=B \cos (\omega t+\pi / 6)-j B \sin (\omega t+\pi / 6)
$$

6. $15 e^{j(\omega t-\pi / 2)}=15 e^{-j \pi / 2} e^{j \omega t}=-j 15 e^{j \omega t}=-j 15(\cos \omega t+j \sin \omega t)$

$$
=-j 15 \cos \omega t-j^{2} 15 \sin \omega t=15 \sin \omega t-j 15 \cos \omega t
$$

7. $e^{-j 3 \pi / 2}=\cos \left(\frac{-3 \pi}{2}\right)+j \sin \left(\frac{-3 \pi}{2}\right)=0+j=j$

## $\underline{\text { Express in proper polar form: }}$

Proper polar form requires a complex number to be expressed in terms of a positive magnitude and a phase angle (phase can be expressed either in exponential form or in angular form; that is, either "mag $e^{j \text { phase" }}$ or "mag $\angle$ phase").

1. $-10 e^{-j 3 \pi / 2}=10(-1) e^{-j 3 \pi / 2}=10 e^{j \pi} e^{-j 3 \pi / 2}=10 e^{j(\pi-3 \pi / 2)}=10 e^{-j \pi / 2}$ or $10 e^{-j \pi} e^{-j 3 \pi / 2}=10 e^{j(-\pi-3 \pi / 2)}=10 e^{-j 5 \pi / 2}=10 e^{-j 2 \pi} e^{-j \pi / 2}=10 e^{-j \pi / 2}$

The usual practice is to give phase values in the range $-\pi$ to $\pi$.
Note that $e^{j \pi}=\cos (\pi)+j \sin (\pi)=-1+j 0=-1$ and that

$$
e^{-j \pi}=\cos (-\pi)+j \sin (-\pi)=\cos (\pi)-j \sin (\pi)=-1\left(\pi \mathrm{rad}=180^{\circ}\right)
$$

Also note that $e^{j 2 \pi}=e^{-j 2 \pi}=1$.
2. $B e^{-j \omega t-\alpha t}=B e^{-j \omega t} e^{-\alpha t}=B e^{-\alpha t} e^{-j \omega t}$

Note that $-j \omega t-\alpha t$ does not represent a phase angle because it contains a real part $(-\alpha t)$.
The magnitude in this case ( $B e^{-\alpha t}$ ) is time-varying, which is okay.

Find real and imaginary parts:

1. $\operatorname{Re}\left\{8 e^{-j 0.12}\right\}=\operatorname{Re}\{7.94-j 0.096\}=7.94$

The result $7.94-j 0.096$ is from the earlier polar-to-rectangular problem set.
$\operatorname{Im}\left\{8 e^{-j 0.12}\right\}=\operatorname{Im}\{7.94-j 0.096\}=-0.096$
2. $\operatorname{Re}\left\{14 \angle 132^{\circ}\right\}=\operatorname{Re}\{-9.37+j 10.4\}=-9.37$

The result $-9.37+j 10.4$ is from the earlier polar-to-rectangular problem set.

$$
\operatorname{Im}\left\{14 \angle 132^{\circ}\right\}=\operatorname{Im}\{-9.37+j 10.4\}=10.4
$$

3. $\operatorname{Re}\{2\}=\operatorname{Re}\{2+j 0\}=2$

$$
\operatorname{Im}\{2\}=0
$$

4. $\operatorname{Re}\{j 15\}=\operatorname{Re}\{0+j 15\}=0$

$$
\operatorname{Im}\{j 15\}=15
$$

5. $\operatorname{Re}\{\sin \omega t\}=\operatorname{Re}\{\sin \omega t+j 0\}=\sin \omega t$

$$
\operatorname{Im}\{\sin \omega t\}=0
$$

6. $\operatorname{Re}\{j \cos \omega t\}=\operatorname{Re}\{0+j \cos \omega t\}=0$

$$
\operatorname{Im}\{j \cos \omega t\}=\cos \omega t
$$

7. $\operatorname{Re}\left\{x^{2}+y^{2}+j 2 x y\right\}=x^{2}+y^{2}$

$$
\operatorname{Im}\left\{x^{2}+y^{2}+j 2 x y\right\}=2 x y
$$

Express in proper rectangular form:

1. $j 5(-3+j 20)=(j 5)(-3)+(j 5)(j 20)=-j 15-100=-100-j 15$

Proper form is to put the real part on the left and the imaginary part on the right.
2. $-16(j 2)^{2}-j 8(j 3)^{2}=-16\left(j^{2}\right)\left(2^{2}\right)-j 8\left(j^{2}\right)\left(3^{2}\right)=-16(-1)(4)-j 8(-1)(9)=64+j 72$
3. $(j \beta+\alpha)^{2}=(j \beta+\alpha)(j \beta+\alpha)=(j \beta)(j \beta)+2(j \beta \alpha)+\alpha^{2}$
$=-\beta^{2}+j 2 \alpha \beta+\alpha^{2}=\alpha^{2}-\beta^{2}+j 2 \alpha \beta$
The real part is $\alpha^{2}-\beta^{2}$, and the imaginary part is $2 \alpha \beta$.

Find magnitudes and phases:

1. $e^{-j \pi / 2}=1 e^{-j \pi / 2}$

By inspection, the magnitude is $1\left(\left|e^{-j \pi / 2}\right|=1\right)$,
and the phase is $-\pi / 2$ (or $3 \pi / 2$, since $e^{-j \pi / 2}=e^{j 3 \pi / 2}$ ).
2. $5 e^{-j \pi}$

By inspection, the magnitude is $5\left(\left|5 e^{-j \pi}\right|=5\right)$,
and the phase is $-\pi$ ( or $\pi$ ).
Also, note that $5 e^{-j \pi}=5 e^{j \pi}=5(-1)=-5$.
3. $-9 e^{-j \pi / 3}=9(-1) e^{-j \pi / 3}=9 e^{j \pi} e^{-j \pi / 3}=9 e^{j(\pi-\pi / 3)}=9 e^{j 2 \pi / 3}$
or $-9 e^{-j \pi / 3}=9 e^{-j \pi} e^{-j \pi / 3}=9 e^{j(-\pi-\pi / 3)}=9 e^{-j 4 \pi / 3}$
$\rightarrow\left|-9 e^{-j \pi / 3}\right|=9$ and
phase $\left\{-9 e^{-j \pi / 3}\right\}=2 \pi / 3$ or $-4 \pi / 3$
Note that the angle $2 \pi / 3\left(120^{\circ}\right)$ is equivalent to the angle $-4 \pi / 3\left(-240^{\circ}\right)$.
4. $|2+j 3|=\sqrt{(2)^{2}+(3)^{2}}=3.61$ phase $\{2+j 3\}=\tan ^{-1}(3 / 2)=0.983\left(56.3^{\circ}\right)$

Thus, $2+j 3=3.61 e^{j 0.983}=3.61 \angle 56.3^{\circ}$
5. $|-j 8|=\sqrt{(0)^{2}+(-8)^{2}}=8$ phase $\{-j 8\}=\tan ^{-1}(-8 / 0)=\tan ^{-1}(-\infty)=-\pi / 2\left(-90^{\circ}\right)$
6. $\left|j F e^{j 0.83 \pi}\right|=|j||F|\left|e^{j 0.83 \pi}\right|$
(The magnitude of a product is equal to the product of the magnitudes.)
Since $|j|=1$ and $\left|e^{j 0.83 \pi}\right|=1$, then
$\left|j F e^{j 0.83 \pi}\right|=|F|=F$

To find the phase, put the expression into proper polar form (using $j=e^{j \pi / 2}$ ):
$j F e^{j 0.83 \pi}=F e^{j \pi / 2} e^{j 0.83 \pi}=F e^{j(\pi / 2+0.83 \pi)}=F e^{j 1.33 \pi}$
$\rightarrow$ phase $\left\{j F e^{j 0.83 \pi}\right\}=1.33 \pi\left(239.4^{\circ}\right)$ by inspection
The phase can also be expressed as $1.33 \pi-2 \pi=-0.67 \pi\left(-120.6^{\circ}\right)$.
7. The solution is very similar to that of Problem 6.
$\left|j F e^{j g}\right|=|j||F|\left|e^{j g}\right|=(1)(F)(1)=F$
To find the phase, put the expression into proper polar form:
$j F e^{j g}=F e^{j \pi / 2} e^{j g}=F e^{j(\pi / 2+g)}$
$\rightarrow$ phase $\left\{j F e^{j g}\right\}=\pi / 2+g$ by inspection
8. $|-15|=15$

Put the expression into proper polar form:

$$
\begin{aligned}
& -15=15(-1)=15 e^{ \pm j \pi} \\
& \rightarrow \text { phase }\{-15\}=\pi \text { or }-\pi\left( \pm 180^{\circ}\right)
\end{aligned}
$$

9. $j=e^{j \pi / 2}$, so $|j|=1$

The phase is $\pi / 2$ by inspection.

## Find complex conjugates:

To find the complex conjugate of a complex number or expression, simply replace every occurrence of $j$ with $-j$. The conjugate of a sum is equal to the sum of the conjugates, and the conjugate of a product is equal to the product of the conjugates.

1. $j^{*}=-j$
2. $\left(2+j 7-F e^{j g}\right)^{*}=2-j 7-F e^{-j g}$
3. $\left(3 \times 10^{-6}\right)^{*}=3 \times 10^{-6}$

Real numbers are unaffected by complex conjugation.
4. $[\operatorname{Re}\{5+j 15\}]^{*}=(5)^{*}=5$
5. $[\operatorname{Im}\{5+j 15\}]^{*}=(15)^{*}=15$
6. $\left[-j 832 e^{-0.3 z} e^{(7-j 18) t}\right]^{*}=j 832 e^{-0.3 z} e^{(7+j 18) t}$
7. $\left[8 e^{-j 0.12}(0.3+j 6.1)\right]^{*}=8 e^{j 0.12}(0.3-j 6.1)$

