Hint for Graded Prob. 3 of HW \#1

Some students are obtaining a value for R^{\prime} that is half of that given in the posted answer for Graded Prob. 3. It occurs when the relationship

$$
Z_{0} \gamma=\sqrt{\frac{R^{\prime}+j \omega L^{\prime}}{G^{\prime}+j \omega C^{\prime}}} \sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)}=R^{\prime}+j \omega L^{\prime}
$$

is applied to solve the problem, which seems like a reasonable approach. However, the strategy does not work in this case because the value given for Z_{0} in the problem statement is only approximate. Because the line is slightly lossy, Z_{0} has a complex value with a very small imaginary part. It turns out that the missing imaginary part must be included if the expression above is to be used to find an accurate value for R^{\prime}. The notes below explain why.

Start by obtaining alternate expressions for γ and Z_{0} under the condition (applicable in Prob. 3) that $G^{\prime}=0$:

$$
\gamma=\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(j \omega C^{\prime}\right)}=\sqrt{j \omega R^{\prime} C^{\prime}-\omega^{2} L^{\prime} C^{\prime}}=\sqrt{-\omega^{2} L^{\prime} C^{\prime}+j \omega R^{\prime} C^{\prime}}
$$

and

$$
Z_{0}=\sqrt{\frac{R^{\prime}+j \omega L^{\prime}}{j \omega C^{\prime}}}=\sqrt{\frac{R^{\prime}}{j \omega C^{\prime}}+\frac{L^{\prime}}{C^{\prime}}}=\sqrt{\frac{L^{\prime}}{C^{\prime}}-j \frac{R^{\prime}}{\omega C^{\prime}}} .
$$

Factor out the real part of each expression:

$$
\gamma=\sqrt{-\omega^{2} L^{\prime} C^{\prime}} \sqrt{1-j \frac{\omega R^{\prime} C^{\prime}}{\omega^{2} L^{\prime} C^{\prime}}}=j \omega \sqrt{L^{\prime} C^{\prime}} \sqrt{1-j \frac{R^{\prime}}{\omega L^{\prime}}}
$$

and

$$
Z_{0}=\sqrt{\frac{L^{\prime}}{C^{\prime}}} \sqrt{1-j \frac{R^{\prime}}{\omega C^{\prime}} \cdot \frac{C^{\prime}}{L^{\prime}}}=\sqrt{\frac{L^{\prime}}{C^{\prime}}} \sqrt{1-j \frac{R^{\prime}}{\omega L^{\prime}}} .
$$

Multiplying the two expressions gives the same result as that shown at the top of this page:

$$
\begin{aligned}
Z_{0} \gamma & =\sqrt{\frac{L^{\prime}}{C^{\prime}}} \sqrt{1-j \frac{R^{\prime}}{\omega L^{\prime}}}\left(j \omega \sqrt{L^{\prime} C^{\prime}}\right) \sqrt{1-j \frac{R^{\prime}}{\omega L^{\prime}}}=j \omega \sqrt{L^{\prime} C^{\prime}} \sqrt{\frac{L^{\prime}}{C^{\prime}}}\left(1-j \frac{R^{\prime}}{\omega L^{\prime}}\right) \\
& =j \omega L^{\prime}\left(1-j \frac{R^{\prime}}{\omega L^{\prime}}\right)=j \omega L^{\prime}+R^{\prime} .
\end{aligned}
$$

But now consider what happens when we approximate Z_{0} as purely real (as is done in Prob. 3), that is, when we assume that

$$
Z_{0}=\sqrt{\frac{L^{\prime}}{C^{\prime}}} .
$$

Forming the product $\mathrm{Z}_{0} \gamma$ now yields

$$
\begin{aligned}
Z_{0} \gamma & =\sqrt{\frac{L^{\prime}}{C^{\prime}}}\left(j \omega \sqrt{L^{\prime} C^{\prime}}\right) \sqrt{1-j \frac{R^{\prime}}{\omega L^{\prime}}}=j \omega \sqrt{L^{\prime} C^{\prime}} \sqrt{\frac{L^{\prime}}{C^{\prime}}} \sqrt{1-j \frac{R^{\prime}}{\omega L^{\prime}}} \\
& =j \omega L^{\prime} \sqrt{1-j \frac{R^{\prime}}{\omega L^{\prime}}} .
\end{aligned}
$$

As in Graded Prob. 5, we can apply the approximation $(1 \pm x)^{1 / 2} \approx 1 \pm x / 2$, which is valid for $|x|$ $\ll 1$, because in this case $R^{\prime} \ll \omega L^{\prime}$ (the line is slightly lossy). The expression for $Z_{0} \gamma$ becomes

$$
Z_{0} \gamma \approx j \omega L^{\prime}\left(1-j \frac{R^{\prime}}{2 \omega L^{\prime}}\right)=j \omega L^{\prime}+\frac{R^{\prime}}{2} .
$$

The only difference between this expression for $Z_{0} \gamma$ and the previous one is that Z_{0} is assumed to be purely real in this one. That assumption leads to a value for the real part of $Z_{0} \gamma$ that is half the value of R^{\prime}. Thus, the product $Z_{0} \gamma$ cannot be used to find R^{\prime} if Z_{0} is assumed to be real or, alternatively, if the approximation is used, then the relationship $\operatorname{Re}\left\{Z_{0} \gamma\right\}=0.5 R^{\prime}$ must be applied.

To solve Graded Prob. 3 of HW \#1, I would like you to apply a different approach to find R^{\prime}. You may use the result(s) from one of the other problems if you wish.

