Final Exam General Information

The final exam will take place 11:45 am-2:45 pm on Wednesday, December 13 in Breakiron 065. The exam will be designed to be completed in less than 1.5 hours, but the exam period will be three hours long. You must begin the exam at 11:45 am. You will not be allowed to take the exam if you arrive after the first student has completed it and left the room.

The first page of the exam will include the following instructions, although some might be shortened or paraphrased:

The following policies will be in effect for the exam:

1. You will be allowed to use a non-wireless enabled calculator, such as a TI-99. You should put away smart watches, cell phones, tablets, laptops, and other devices that can connect to the internet wirelessly. I will record your calculator make and model during the exam.
2. You will be allowed to use an unlimited number of paper help sheets. These could include the notes that you recorded in class, homework solutions, supplemental notes from the course Moodle site, copied or printed pages from the textbook, or any other printed or handwritten material. A copy of the linear system solvability flowchart (Fig. 8.3.1 of Zill, 6th ed.) will be provided. If there is anything else that you feel would be helpful, please notify me.
3. You may not leave the exam room without prior permission except in an emergency or for an urgent medical condition. Please use the restroom before the exam.

Solutions to the final exam will not be posted, but you may review your final exam and discuss it with me at any time after it has been graded, even next year. Your final exam score will be posted at the course Moodle site and will remain there indefinitely.

A list of topics to be covered on the exam begins on the next page.

Review Topics for Final Exam

Below is a list of topics that could appear in one form or another on the exam. Not all of these topics will be covered, and it is possible that an exam problem could cover a detail not specifically listed here. However, this list has been made as comprehensive as possible. You should be familiar with the topics on the previous review sheet in addition to those listed below.

Although significant effort has been made to ensure that there are no errors in this review sheet, some might nevertheless appear. The textbook and the course lecture notes are the final authority in all factual matters, unless errors have been specifically identified there. You are ultimately responsible for obtaining accurate and authoritative information when preparing for the exam.

Power series solutions to ODEs

- constant coefficients \rightarrow find roots of characteristic equation; power series not necessary
- variable coefficients \rightarrow power series solution

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

- power series approach works in general for any DE; unnecessary for constant coefs
- ordinary points: values of x at which variable coefficients are analytic
- singular points: values of x that are not ordinary points example: $\ln (x)$ is not analytic for $x \leq 0$, so the ordinary points are $x>0$
- power series solutions valid only over intervals for which they converge; often not valid over all of $-\infty<x<\infty$
Frequently encountered ODEs and their suggested solutions (there are many other ODEs besides these)
- Fourier equation: $y^{\prime \prime}+a^{2} y=0$ solution: $y(x)=c_{1} \cos (a x)+c_{2} \sin (a x)$
- modified Fourier equation: $y^{\prime \prime}-a^{2} y=0$
solution: $y(x)=c_{1} \cosh (a x)+c_{2} \sinh (a x)$
- Cauchy-Euler equation: $x^{2} y^{\prime \prime}+x y^{\prime}+y=0$
o try solutions of the form $y=x^{m}$
o find roots of auxiliary equation $a m^{2}+(b-a) m+c=0$
0 for distinct real roots m_{1} and $m_{2}, y(x)=c_{1} x^{m_{1}}+c_{2} x^{m_{2}}$
0 for repeated real roots $m_{1}, y(x)=c_{1} x^{m_{1}}+c_{2} x^{m_{1}} \ln x$
o for complex conjugate roots $m=\alpha \pm j \beta$,
$y(x)=x^{\alpha}\left[c_{1} \cos (\beta \ln x)+c_{2} \sin (\beta \ln x)\right]$
o special case: $x^{2} y^{\prime \prime}+x y^{\prime}-\alpha^{2} y=0$
solutions are $y=\left\{\begin{array}{cc}c_{1}+c_{2} \ln x, & \alpha=0 \\ c_{1} x^{-\alpha}+c_{2} x^{\alpha}, & \alpha>0\end{array}\right.$
o further special case: $x^{2} y^{\prime \prime}+x y^{\prime}-y=0(\alpha=1)$
solution is $y=\frac{c_{1}}{x}+c_{2} x$
- Bessel equation: $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0$ (v often replaced with n) solution: $y(x)=c_{1} J_{v}(x)+c_{2} Y_{v}(x)$ (Bessel functions of the $1^{\text {st }} \& 2^{\text {nd }}$ kind)
- modified Bessel equation: $x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+v^{2}\right) y=0$ (v often replaced with n) solution: $y(x)=c_{1} I_{v}(x)+c_{2} K_{v}(x)$ (modified Bessel functions of the $1^{\text {st }} \& 2^{\text {nd }}$ kind)
- parametric Bessel equation: $x^{2} y^{\prime \prime}+x y^{\prime}+\left(\alpha^{2} x^{2}-v^{2}\right) y=0$
solution: $y(x)=c_{1} J_{v}(\alpha x)+c_{2} Y_{v}(\alpha x)$
- modified parametric Bessel equation: $x^{2} y^{\prime \prime}+x y^{\prime}-\left(\alpha^{2} x^{2}+v^{2}\right) y=0$ solution: $y(x)=c_{1} I_{v}(\alpha x)+c_{2} K_{v}(\alpha x)$
Inner product of two functions
- analogous to vector inner product
- definition:
given two functions $y_{m}(x)$ and $y_{n}(x)$ and a weighting function $p(x)$,
$\left\langle y_{m}, y_{n}\right\rangle_{p(x)}=\int_{a}^{b} y_{m}(x) y_{n}(x) p(x) d x$,
where a and b specify the interval over which the inner product is defined
- norm: $\left\|y_{n}\right\|=\sqrt{\int_{a}^{b} y_{n}^{2}(x) p(x) d x}$
- square norm (self-product): $\left\|y_{n}\right\|^{2}=\int_{a}^{b} y_{n}^{2}(x) p(x) d x$

Boundary conditions

- Dirichlet: conditions on dependent variable [e.g., $y(L)=0$]
- Neumann: conditions on derivative(s) of dependent variable [e.g., $y^{\prime}(L)=0$]
- Robin: conditions on dependent variable and derivative(s) combined
[e.g., $A_{1} y(L)+B_{1} \mathrm{y}^{\prime}(L)=C_{1}$]
- definition of homogeneous BVP: DE and BCs $=0$

Regular Sturm-Liouville problem

$$
\frac{d}{d x}\left[r(x) \frac{d y}{d x}\right]+q(x) y+\lambda p(x) y=0
$$

- some textbooks use $p(x)$ in place of $r(x)$ and $w(x)$ in place of $p(x)$
- second-order with variable coefficients
- form above is called "self-adjoint" form; allows identification of weight function $p(x)$ used in inner product
- $\quad \lambda$ is a parameter in the problem (eigenvalue)
- $r(x), p(x)>0$ on interval of solution
- boundary conditions defined over interval (a, b) :

$$
\begin{aligned}
& A_{1} y(a)+B_{1} y^{\prime}(a)=0 \\
& A_{2} y(b)+B_{2} y^{\prime}(b)=0
\end{aligned}
$$

- guarantees: orthogonality, completeness, representation

Orthogonality conditions on solutions to Sturm-Liouville problem

- relationship between inner product and boundary conditions

$$
\begin{aligned}
\left(\lambda_{m}-\lambda_{n}\right) \int_{a}^{b} p(x) y_{m}(x) y_{n}(x) d x & =r(b)\left[y_{m}(b) y_{n}^{\prime}(b)-y_{n}(b) y_{m}^{\prime}(b)\right] \\
& -r(a)\left[y_{m}(a) y_{n}^{\prime}(a)-y_{n}(a) y_{m}^{\prime}(a)\right]
\end{aligned}
$$

- implications:
o boundary conditions must be homogenous if the solutions y_{m} and y_{n} are to be orthogonal. If $m \neq n$ and the BCs are homogeneous, then the right-hand side equals zero
o y_{m} and y_{n} can be orthogonal if $r(x)=0$ at one of the boundaries and the BC at the other boundary is homogeneous
Singular Sturm-Liouville problem
- addresses cases when $r(x)>0$ is not satisfied at one or both boundaries
- right-hand side of equation in inner product relationship above is zero when:
$0 \quad r(a)=0$ and $y_{m}(b) y_{n}^{\prime}(b)-y_{n}(b) y_{m}^{\prime}(b)=0$
○ $\quad r(b)=0$ and $y_{m}(a) y_{n}^{\prime}(a)-y_{n}(a) y_{m}^{\prime}(a)=0$
o $\quad r(a)=r(b)=0$ and no BCs are specified at $x=a$ or $x=b$
o $\quad r(a)=r(b)$ and the BCs are $y(a)=y(b)$ and $y^{\prime}(a)=y^{\prime}(b)$ (periodic BCs)
0 the solutions $\left\{y_{n}\right\}$ are orthogonal if $r(a)=0$ and/or $r(b)=0$ provided that the solutions are bounded (i.e., do not approach ∞) at the corresponding boundary The "Sturm-Liouville Insurance Policy" (SLIP)
a. There are non-trivial solutions for specific values of the parameter λ (eigenvalues).
b. There is an infinity of eigenvalues.
c. There is a smallest but not a largest eigenvalue.
d. The eigenvalues are real and distinct ($\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots$ such that $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$).
e. For each eigenvalue there is a single solution (eigenfunction) $y_{n}(x)$
f. The eigenfunctions corresponding to two different eigenvalues are orthogonal with respect to the weight function $p(x)$. That is, their inner product is

$$
\left\langle y_{m}, y_{n}\right\rangle_{p(x)}=\int_{a}^{b} y_{m}(x) y_{n}(x) p(x) d x=\left\{\begin{array}{cc}
0, & m \neq n \\
C_{m}, & m=n
\end{array}\right.
$$

where C_{m} is some non-zero constant
g. The set of solutions is complete; it forms a basis for the space of square-integrable functions on the interval [a, b]:

$$
f(x)=\sum_{n=1}^{\infty} a_{n} y_{n}(x), \quad \text { where } \quad a_{n}=\frac{\left\langle f(x), y_{n}(x)\right\rangle}{\left\langle y_{n}(x), y_{n}(x)\right\rangle}=\frac{\left\langle f(x), y_{n}(x)\right\rangle}{\left\|y_{n}(x)\right\|}
$$

Conversion of second-order ODE to self-adjoint Sturm-Liouville form (not always possible):

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y+\lambda d(x) y=0 \quad \rightarrow \quad \frac{d}{d x}\left[r(x) \frac{d y}{d x}\right]+q(x) y+\lambda p(x) y=0
$$

a. compute the integrating factor $\mu(x)$ (watch out for $a(x)=0$ for any x over the bounded interval):
$\mu(x)=\exp \left(\int \frac{b(x)}{a(x)} d x\right)$
b. compute the elements of the S-L self-adjoint form:

$$
r(x)=\mu(x) \quad q(x)=\frac{c(x)}{a(x)} \mu(x) \quad p(x)=\frac{d(x)}{a(x)} \mu(x)
$$

c. Verify that $r(x), p(x)>0$ over interval of solution

Method of separation of variables (SOV)

- applicable to partial differential equations (PDEs)
- not always possible to find a solution with this method; some PDE solutions are not separable
- overall solution assumed to be product of solutions in each independent variable
- solution to ODE in one independent variable could be an infinite sum of eigenfunctions corresponding to different eigenvalues (superposition principle)
- focus on three commonly encountered homogeneous equations (variations are possible):
o heat equation: $k \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad k \geq 0$
o wave equation: $a^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}$
o Laplace's equation: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
- boundary conditions:
o Dirichlet - apply to dependent variable at boundaries
o Neumann - apply to spatial derivative of dependent variable at boundaries
o Robin - relationship b/w dependent variable and its spatial derivative
o open - no physical boundaries; solution space extends indefinitely
- typical initial conditions:
o $u(x, 0)=f(x)$
- $\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=g(x)$
- separated $2^{\text {nd }}$-order ODEs could have eigenvalues that satisfy $\lambda<0, \lambda=0$, and/or $\lambda>0$; form of solution depends on which one(s) lead(s) to non-trivial solutions
- solution usually takes form of infinite series of eigenfunctions in all independent variables
- coefficients in infinite series are determined using inner products of orthogonal eigenfunctions
- interpretation of solutions
o helpful to determine whether solution is correct (does it make sense?)
o heat/diffusion problems - does time progression of solution correspond to heat/concentration gradients?
o wave equation - solutions are typically standing waves at harmonically related frequencies (in Cartesian coordinate system) if solution space is bounded; equivalent to superpositions of counterpropagating traveling waves
o Laplace's equation -solution should obey the maximum principle (max and min values on boundary; no local max/min extrema in interior of solution space)
- d'Alembert's solution for wave equation with open boundary conditions

Problems in cylindrical coordinates

- after separation, one of the ODEs is typically in the form of the parametric Bessel equation ($r^{2} R^{\prime \prime}+r R^{\prime}+\lambda r^{2} R=0$) or Cauchy-Euler equation ($r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0$)
- requirement that solution be finite at $r=0$ usually eliminates $Y_{n}(\alpha x)$ or r^{-n} as a solution
- usually necessary to find the zeroes of Bessel function; can be derived using special numerical methods or can look up in widely available tables
- periodicity condition might be applied to one of the ODEs; e.g., $\Theta(\theta)=\Theta(\theta+2 \pi)$

Numerical solution of PDEs

- replace derivatives in PDEs with finite difference approximations
- types of finite differences (can be applied in time or spatial domain), where Δx is a spatial interval of small but non-zero or non-infinitesimal size

0 forward difference: $\frac{\partial u(x)}{\partial x} \approx \frac{u(x+\Delta x, t)-u(x, t)}{\Delta x}$
0 backward difference: $\frac{\partial u(x)}{\partial x} \approx \frac{u(x, t)-u(x-\Delta x, t)}{\Delta x}$
o centered difference: $\frac{\partial u(x)}{\partial x} \approx \frac{u(x+\Delta x, t)-u(x-\Delta x, t)}{2 \Delta x}$

- centered second-order finite difference: $\frac{\partial^{2} u(x)}{\partial x^{2}} \approx \frac{u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)}{\Delta x^{2}}$
- for time-domain finite differences, Δt is used, where Δt is a time interval of short but nonzero duration
- shorthand notation

O $u_{i, j}=u(x, t)$
0 $u_{i+1, j}=u(x+\Delta x, t)$
0 $\quad u_{i-1, j}=u(x-\Delta x, t)$
o $\quad u_{i, j+1}=u(x, t+\Delta t)$
0 $\quad u_{i, j-1}=u(x, t-\Delta t)$

- explicit vs. implicit solutions
- explicit finite difference solutions usually have stability criterion that limits value of Δt

0 for explicit FD solution of heat equation, $\frac{c \Delta t}{\Delta x^{2}} \leq 0.5, \quad$ where $c=$ thermal diffusivity
0 for explicit FD solution of wave equation (the Courant-Friedrichs-Lewy, or CFL, condition),
$\frac{v_{p} \Delta t}{\Delta x} \leq 1, \quad$ where $v_{p}=$ propagation velocity

- Crank-Nicholson algorithm
o applies specifically to the heat/diffusion equation
0 implicit, which requires solution of a system of equations (matrix equation) at every time step
o inherently stable; no restriction on time step size for stability
o can be expressed in matrix form, which might enhance efficiency
- incorporation of boundary conditions into FD solutions
o Dirichlet - simply set solution values at boundaries equal to the specified BCs
o Neumann - apply FD approximation (centered type, if possible) and combine with update equation that applies to interior points in the solution space
o Robin - similar to Neumann
o open - for wave equation, use FD approximation of one-way wave equation and combine with update equation that applies to interior points in the solution space (more sophisticated open BCs are available as well)
- accuracy considerations

0 accuracy generally improves as spatial step size Δx and/or time step size Δt is decreased, although not always (e.g., CFL condition is most accurate setting for Δt in explicit FD solution of wave equation)
o grid dispersion: artificial change in velocity (usually frequency dependent) due to discretization in space; can reduce by using small spatial step sizes
o grid dissipation: artificial attenuation (usually frequency dependent) due to discretization in space; can reduce by using small spatial step sizes
o finite precision of computer representation of numbers becomes a problem for very small step sizes
0 decreasing Δx and/or Δt leads to increased use of computational resources (e.g., memory \& execution time)

- FD solutions in non-Cartesian coordinate systems can be challenging due to more complicated expressions and variable step sizes. It is sometimes better to use the Cartesian coordinate system and apply a staircase approximation for curving or otherwise irregular boundaries or interfaces between different materials.
- If more than one type of material is present in the solution space, then additional interior boundary conditions might have to be imposed. Some FD methods can account for interior boundaries simply and directly.

Relevant course material:

HW: \#4 through \#8
Labs: \#6 through \#11
Reading: Assignments from Oct. 2 through Dec. 1, including the supplemental readings: "Series Solution Method for ODEs"
"Meet the Bessels"
"Sturm-Liouville Problems: Eigenfunction Orthogonality"
"D'Alembert's Solution of the 1-D Wave Equation Problem in Unbounded Media"
"Open Boundaries in the Finite Difference Solution of the 1-D Wave Equation" "Neumann Boundary Conditions in the Explicit Finite Difference Solution of the 1-D Heat Equation"

