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ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023 
 

Lab #2: Curve Fitting in Matlab 
 
 
Introduction 
 
The goals of this lab exercise are to: 
 

1. Practice developing a least-squares solution using the normal equation and compare the 
results to those obtained using the Matlab backslash (\) operator. 

2. Introduce the Matlab curve-fitting command polyfit and explore its utility and some 
of its disadvantages. 

3. Introduce the concept of the matrix condition number. 
 
Before beginning, download the Matlab script Lab2start.m, which is available at the course 
Moodle site in the “Lab Materials” section. You should set up a separate folder on your own 
computer and/or in your Bucknell private Netspace for your ENGR 695 lab activities. 
 
You might also want to locate and keep handy the last page of the Lab #1 handout entitled 
“Important Matlab Commands for Linear Algebra.” It should be a very helpful resource. 
 
Background 
 
An overdetermined system of linear equations is almost always inconsistent and therefore cannot 
be solved in the sense that an N × 1 solution vector cannot be found that satisfies the M equations 
in N unknowns, where M > N. However, a “closest” solution usually can be found in which the 
solution vector comes closer to satisfying the M equations than any other solution vector. As we 
have seen in class, the term “closest” has to be defined to be meaningful. In the case of the least-
squares solution approach, “closest” means that the element-by-element differences (squared) 
between the actual values of the data vector yi (the right-hand side of the system of equations) 
and the estimates ˆiy  of the data are minimized. The minimization process leads to a matrix 
expression for the closest solution that is often referred to as the normal equation(s). Both the 
singular and plural forms of the term appear in the math literature. 
 
An important application is the task of fitting known functions to a set of data. Often the data are 
noisy and could have unexpected trends. Much insight can be gained if a curve fit can be 
accomplished using simple functions. If so, the results might suggest a path for understanding the 
physical processes that produced the data. In other cases, it might be necessary to represent the 
data compactly via a weighted sum of a small number of elementary functions. There are 
numerous other applications as well. 
 
In a typical problem, a weighted sum of functions is sought that best models the data. The 
functions are known and are typically elementary, and appropriate weights must be found to 
obtain the best representation of the data set. The problem can be cast in functional form as 
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where y(x) represents the true behavior of the dependent variable, ( )ŷ x  is the best (“closest,” in 
a least-squares sense) fit to y(x), {fj(x)}j = 1 to N is a set of N elementary functions, and {cj}j = 1 to N is 
the set of coefficients to be found. In some cases, the function y(x) is known but complicated, 
and the goal is to represent it using a sum of simpler functions. An example is a Fourier series 
representation of a complex periodic function. A Fourier series is a weighted sum of sine and 
cosine functions. To form the matrix expression that is required to find the coefficients, the 
function y(x) must be sampled; that is, y(x) is evaluated at M known values of x, where M > N. In 
other cases, the actual function y(x) is not known, but a set of M discrete data points represents it. 
 
In matrix form, the weighted sum above can be expressed as 
 

ˆ F=y c , 
 
where element the ij of the matrix F is given by Fij = fj(xi) for i = 1 to M. That is, the jth column 
of F contains the M samples of the jth basis function fj(x). Thus, F is M × N in size. The M × 1 
vector ŷ  represents the best estimates of y(xi) at the M data points. The actual values of y(xi) are 
stored in the M × 1 vector y. Note that the values of y are initially known but the values of ŷ are 
not. If desired, the latter vector can be calculated after the N × 1 coefficient vector c has been 
obtained to compare it to the actual data vector y. Typically, the values contained in y and ŷ are 
plotted on the same graph to obtain a visual depiction of the data fit. 
 
In the least-squares approach, a residual or error vector is defined as ˆ= −r y y , where each 
element ri is the difference between the actual data value yi and the best fit value ˆiy . The vector r 
is M × 1 in size. The goal of the least-squares method is either to minimize |r|2 = rTr or to make 
the residual vector orthogonal to the approximation; that is, to ensure that ˆ 0T =r y . Either 
approach leads to the normal equation given by 
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which uniquely determines a set of coefficients (contained in the N × 1 vector c) for the weighted 
sum approximation. Once the coefficients have been obtained, a plot of the best fit curve can be 
obtained by performing the matrix product 
 

ˆ F=y c . 
 
Procedure 
 
Start Matlab, and change the current folder to the one in which you saved the file 
Lab2start.m. Then open Lab2start.m in the Matlab script editor using the “Open” menu 
item in the ribbon at the top of the main Matlab window. You will be able to view and edit the 
file there. 
 
The first several lines of the Matlab script Lab2start.m define a set of 21 data points that 
relates the dependent variable y to the independent variable x. Your goal will be to fit to the data 
the function 

( ) ( )1 2 3ˆ sin 2y x c c x c x= + + . 
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The next few lines of the script are comments that indicate the places (marked by triple asterisks 
***) where you are to insert new lines of code to find the required coefficients by: 
 

1. using the Matlab backslash (\) operator, 
2. using the normal equation as described in the “Background” section above, and 
3. using the Matlab polyfit command. 

 
There will be a lot of common code between the two sections, but the three solution methods 
should be distinct in the modified script that you produce. Note that the most difficult part of the 
first two methods is to form the matrix F. The same matrix can be used for both methods. 
 
The third section of the script marked by asterisks requires you to use Matlab’s polyfit 
command to generate a polynomial fit to the data. You may specify the order of the polynomial 
by changing the value assigned to the variable Norder. The polyfit command takes the x 
and y data that you supply and generates a polynomial of the specified order that best fits the 
data. In principle, the order can range from 1 (linear fit, in which the polynomial is 0 1y c c x= + ) 
to an arbitrarily high number; however, as we will see, the order is limited by practical 
considerations. Note that the number of coefficients is one greater than the order. 
 
Internally, the polyfit command applies the backslash operator to solve the overdetermined 
system of equations that defines the unique set of coefficients. If you examine the subsequent 
code in the Matlab script, it will help you to understand why polynomial fits can pose problems 
as the order of the polynomial becomes large. The script calculates the FTF matrix (which is N × 
N in size) that would be used in a solution based on the normal equation. The script then 
calculates the condition number of the matrix, which, as explained in the Matlab help facility, is 
“the ratio of the largest singular value of [the matrix] to the smallest. Large condition numbers 
indicate a nearly singular matrix.” In other words, a large condition number indicates that any 
calculations that use the matrix are prone to errors, partly because of the wide range in the orders 
of magnitude of the matrix elements and partly because of the finite precision of the computer 
used to make the calculations. The lowest possible condition number is one, which corresponds 
to the identity matrix or scaled identity matrix (the most nonsingular matrix possible), but it can 
have values that reach double and triple-digit powers of 10 (approaching singularity). 
 
After you have successfully computed the coefficients in the function above using the backslash 
and normal equation methods, complete the following steps using the polyfit command: 
 

1. Run your script with the polynomial order set to the values 1, 3, 5, 10, and 20 (i.e., five 
separate runs). 

2. For each case, save the resulting Matlab figure in a format that you can import into your 
favorite word-processing software (e.g., bmp, png or tif). The figure includes the 
solutions obtained using the backslash operator and least squares in addition to the 
polyfit function. The first two are the same for each case since their parameters don’t 
change. Only the order of the polyfit solution changes from one figure to the next. 

3. Note the condition number obtained in each case and whether it rises, falls, or randomly 
varies with the order of the polynomial. Briefly comment on your observations. 

4. Run the script one more time with the polynomial order set to the value 21 (a polynomial 
with 22 terms, which is one more than the number of data points). Note the message that 
appears in the Matlab command window. Do not save the figure if one appears. 
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Assistance with each solution approach will be provided as needed, but try to deduce on your 
own how to complete as much of the work as possible. 
 
After you have completed the lab activities, e-mail to me your modified Matlab script (m-file) 
with the file name LName_Lab2_fa23.m, where LName is your last name (surname), and the 
document containing the saved figures, your comments on how the condition number varies with 
polynomial order, and any other observations that you wish to share. Use the same naming 
convention for the document (e.g., LName_Lab2_fa23.docx). 
 
Lab Scoring 
 
Your score will be based primarily on the Matlab script and the document with figures that you 
submit according to the rubric posted on the Laboratory page at the course web site.  
 
If you do not complete the exercises during the lab session, you may submit your documentation 
as late as 5:00 pm on Friday, September 8. If the files are submitted after the deadline, a 5% score 
deduction will be applied for every 24 hours or portion thereof that the item is late (not including 
weekend days) unless extenuating circumstances apply. No credit will be given five or more days 
after the deadline. 
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