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ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023 
 

Lab #4: Curve Fitting Using Singular Value Decomposition 
 
 
Introduction 
 
In previous lab exercises we applied the normal equation to the problem of finding a set of 
coefficients to approximate a data set using a weighted sum of Gaussian functions. The 
approximation can be expressed as 
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where the actual data are represented as y(xi) and the approximation as ( )ˆ iy x . The basis 
functions are represented by {fj(x)}j = 1 to N. The coefficients were found by applying the normal 
equation 
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which implements the basic least squares (LS) optimization method. We also applied the 
constrained LS method that uses the modified normal equation 
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We saw that the unmodified normal equations produced coefficients with magnitudes that greatly 
exceeded the data magnitudes and were highly oscillatory. The coefficients were smoothed using 
the constrained LS method. However, the Lagrange multiplier γ had to be determined via trial 
and error. Moreover, we had no useful measure of how ill-conditioned the problem was unless 
we used the Matlab cond command, but the constrained LS method itself does not provide 
conditioning information. 
 
In this lab exercise, we will see that similar smoothing can be achieved via the singular value 
decomposition (SVD) method. A type of thresholding can be applied that has an effect much like 
using the Lagrange multiplier in the constrained LS method. We will also be able to determine 
the condition number from the SVD results. 
 
Before beginning, download the Matlab script Lab4start.m, which is available at the course 
Moodle site in the “Lab Materials” section. You should set up a separate folder on your own 
computer and/or in your Bucknell private Netspace for your ENGR 695 lab activities. 
 
You might also want to locate and keep handy the last page of the Lab #1 handout entitled 
“Important Matlab Commands for Linear Algebra.” It should be a very helpful resource for this 
and future lab exercises. 
 
  



 
 2 of 5 
 

Background 
 
The SVD method decomposes a matrix F as 
 

TF U V= Σ , 
 
where U is an M × M column-orthogonal matrix, Σ (sometimes labeled S) is an M × N diagonal 
matrix, and V is an N × N orthogonal matrix. The matrices have the structures depicted below: 
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The quantities u1, u2, etc. are the orthogonal column vectors of length M that make up the matrix 
U. Thus, ui

Tuj = δij, where δij is the Kronecker delta (equal to 1 if i = j and 0 if not). The 
quantities v1, v2, etc. are also orthogonal column vectors but of length N that make up the matrix 
V, so vi

Tvj = δij. 
 
Since parts of U and Σ are not actually necessary for matrix calculations in non-square systems, 
the “economy” decomposition is often used to minimize the required computer memory. The 
matrices in the economy decomposition have the structures depicted below: 
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In this form, matrix U is M × N in size and matrix Σ is N × N in size. For now, we will assume 
that M > N, that is, that we are considering overdetermined systems of equations. 
 
If the SVD is applied to the F matrix in an overdetermined curve-fitting problem, then the 
coefficients can be found via 
 

1T TF U V V U−= → Σ = → = Σc y c y c y , 
 
which makes use of the fact that the matrices U and V are orthogonal, so their inverses are equal 
to their transposes. It can be shown that calculating the coefficients in this way minimizes the 
approximation error (cost function) |Fc – y|2 for overdetermined systems in the least squares 
sense. It therefore yields the same result as the unmodified normal equation. Unfortunately, that 
means that the coefficient values can exhibit the same issues as those obtained using the normal 
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equation, namely excessively large magnitudes and severe oscillation. The problem (and a 
solution) might be made more obvious by expressing the matrix expression for c above in the 
equivalent form 
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where, as explained earlier, ui and vi are the ith orthogonal column vectors of U and V, 
respectively. Note that ui

Ty is the dot product of ui and y. Ill conditioning can be thought of as 
the case in which one or more of the vectors ui is nearly orthogonal to the data vector y. If true, 
then those particular vectors do not contribute much to fitting the data. This would not be much 
of a problem if it weren’t for the small associated singular value. A small dot product ui

Ty by 
itself would suppress the troublesome term; that is, it would scale the associated vi vector by a 
small value. However, because ui

Ty is divided by the tiny singular value σi, the quantity in 
parentheses becomes large and the error is magnified. 
 
This adverse state of affairs can be addressed by modifying the inverse of the singular value 
matrix. Because Σ is a diagonal matrix, its inverse (in economy form) is given by 
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If one or more of the singular values is “too small” (to be qualified later), then the corresponding 
entry in the inverse matrix is simply set to zero. Doing so effectively sets ui

Ty/σi = 0 in the 
summation above, which eliminates the term that poorly fits the data and contributes to the 
ballooning of the coefficient values. Finding an appropriate singular value threshold that 
separates the “useful” terms from the problematic ones is a little involved, but the process is less 
ambiguous than the one for the Lagrange multiplier in the constrained LS method. 
 
Procedure 
 
The Matlab script Lab4start.m is very similar to the one used in the previous lab exercises. 
The first 85 lines set up the curve-fitting problem for the same set of data used before. The next 
section of code is mostly blank; it is where you will need to provide code to implement the SVD 
solution. The remaining lines generate helpful plots. Extensive comments guide you through the 
logical flow of the script. 
 
Take some time to familiarize yourself with the script Lab4start.m and then complete the 
following steps: 
 

1. Find the text ‘Your Name Here’ in the code following the line figure(2) near the end 
of the script, and change the text to your name. This will cause your name to appear in 
one of the plots. 

2. Make sure that the first data set (second column of the data matrix) is selected. This is 
determined around line 58 with the y = y1 command. 
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3. Add code to the blank section indicated by the comment line “*** SOLUTION USING 
SINGULAR VALUE DECOMPOSITION (SVD)” to calculate the coefficients using the 
Matlab svd command, and use some of the results of the command to determine the 
condition number of the F matrix. (Do not use the Matlab cond command.) Store the 
coefficients in the variable cSVD and the condition number of F in the variable 
condSVD.  

4. Run the script initially without modifying the matrix Σ−1 to check your code. As 
explained in the “Background” section above, you should obtain the same set of 
coefficients as for the unconstrained LS method. The condition numbers for the FTF 
matrix in the LS solution and for F alone in the SVD solution should appear in the header 
information above the plot of the coefficients. Note that the coefficients have enormous 
magnitudes and that they oscillate between positive and negative values. Each set of 
coefficients has its own y-axis; the one for the SVD coefficients is on the right side of the 
plot. The two sets of coefficients are listed in the Matlab command window in addition to 
being displayed in one of the plots. 

5. Display the singular value matrix, and examine the relative sizes of the entries on the 
main diagonal. The smaller values might be represented as zero even if that is not their 
actual values. For those singular values, you might have to display them independently 
using a command such as S(10,10). 

6. Now add code to the SVD section that sets the diagonal entries of Σ−1 to zero if their 
corresponding singular values are sufficiently smaller than σ1, the largest singular value, 
in a relative sense. The threshold should be defined as a factor that multiplies σ1, (e.g., 
10−8σ1). As the cut-off threshold increases (to a point), the coefficients should decrease in 
magnitude and reduce their tendency to oscillate while still maintaining a good fit to the 
data. There are guidelines for setting a threshold, but the theory is a little involved. For 
now, use trial and error to find the threshold that seems to produce “reasonable” 
coefficient values and a good fit. 

7. Save a copy of the plot entitled “Lab #4: Original Curve and Approximations,” which 
should now have your name on the second line, and import it into your favorite word-
processing software. For Microsoft Word, the *.tif or *.png formats generally work well. 
Add your name, “ENGR 695,” and the lab number to the top of the document. Under the 
plot, add the condition numbers of the normal (FTF) matrix for the unconstrained LS case 
and of F for the SVD case. Also add some brief comments explaining why you chose 
your particular threshold for eliminating problematic singular values and the value 
(relative to the first singular value σ1) of the threshold factor that you used. Please 
convert the file to PDF format and name it LName_Lab4_fa23.pdf, where LName is 
your last name. 

 
Assistance will be provided as needed, but try to deduce on your own how to complete as much 
of the work as possible. 
 
After you have completed the lab activities, e-mail to me the following files: 
 

1. Your modified Matlab script (m-file) with the file name LName_Lab4_fa23.m, where 
LName is your last name (surname). 

2. The document (named LName_Lab4_fa23.pdf) that contains the saved plot, the 
associated condition numbers, and your comments explaining why you chose your 
threshold value for eliminating problematic singular values. 
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Lab Scoring and Submission Deadline  
 
Your score will be based primarily on the Matlab script and the document with figures that you 
submit according to the rubric posted on the Laboratory page at the course web site.  
 
If you do not complete the exercises during the lab session, you may submit your documentation 
as late as 11:59 pm on Friday, September 29. If the files are submitted after the deadline, a 5% 
score deduction will be applied for every 24 hours or portion thereof that the item is late (not 
including weekend days) unless extenuating circumstances apply. No credit will be given five or 
more days after the deadline. 
 
© 2021–2023 David F. Kelley, Bucknell University, Lewisburg, PA 17837. 
 


