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ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023 
 

Lab #9: Explicit Finite Difference Solution of Heat Equation 
 
 
Introduction 
 
We have seen that many partial differential equations (PDEs) can be solved relatively easily via 
the separation of variables (SOV) method, especially if their boundary conditions align with the 
applicable coordinate system. Other problems, however, are very difficult or even impossible to 
solve in this way. Examples include complicated nonhomogeneous problems and cases in which 
the problem geometry is highly irregular and does not conform to an orthogonal coordinate 
system. In these situations, it is often necessary to turn to some type of numerical method. While 
numerical approaches are usually more versatile and often have simpler formulations than 
analytical approaches like the SOV method, the downside is that they usually provide less 
physical insight. Numerical solutions can have other practical limitations as well such as 
requiring significant computational resources. 
 
In this lab session, you will examine the solution of the heat equation using an explicit finite 
difference method. You will have the opportunity to write the key parts of the code that 
implement the algorithm and to observe how choices of various solution parameter values affect 
its accuracy and stability. 
 
Theoretical Background 
 
A widely used numerical approach is the finite difference (FD) method, which approximates the 
derivatives in a PDE using backward, forward, or centered finite differences. The FD method can 
be either explicit, in which the dependent variable at each point in the solution space at each time 
step is sequentially calculated using known quantities from the previous time step, or implicit, in 
which the dependent variable at all points in the solution space are calculated simultaneously via 
a system of equations (i.e., a matrix solution). 
 
For example, an explicit FD solution of the one-dimensional heat equation described by 
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and where ui,j is the value of the dependent variable (heat or temperature) at the location xi = 
a + (i – 1)∆x for i = 1, 2, 3, …, Nx, where Nx is the number of discrete points within the solution 
space. Index j specifies the discrete moment in time t = j ∆t, and constant c is the thermal 
diffusivity of the material. 
 
Since the dependent variable u is evaluated only at a finite number (Nx) of discrete points in the 
solution space, the values of u over the whole space at a given moment in time are stored in a 
software vector of length Nx. The solution at all points within the space is then “updated” at each 
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new time step in the numerical routine using the expression for ui, j+1 given above, which is why 
it is often referred to as an update equation. Note that the value of u at location i and time 
(j + 1)∆t depends only on the values of u at the same or adjacent locations at the previous time 
step (j ∆t), thus confirming that this is an explicit method. 
 
Dirichlet boundary conditions such as 
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are treated in the FD solution simply by maintaining the values 
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at all times, where again Nx is the number of spatial locations in the solution space. That is, the 
first and last elements of the dependent variable vector are set equal to the values specified by 
the boundary conditions at the beginning of the execution of the routine and are then left 
unchanged. The update equation is not applied at those locations. The initial condition 
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is accommodated by filling the solution vector at time t = 0 (corresponding to j = 0) with the 
values of f(x) evaluated at each location within the solution space. That is, 
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A key disadvantage of most explicit methods is that they can become unstable if the relationship 
between the spatial step size ∆x and the temporal step size ∆t is not constrained. An unstable 
solution is one that grows unnaturally without bound and therefore represents nonphysical 
behavior. For example, for the explicit FD update equation given above, the condition 
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must be satisfied to obtain a stable solution. The proof of the stability condition is beyond the 
scope of this course but can be found in good textbooks on numerical methods. 
 
Procedure 
 
• Your assignment is to add a few lines of code to an incomplete Matlab m-file to solve a 1-D 

heat distribution problem like the one described above using an explicit finite difference 
method. Download the following Matlab m-files, which are available at the course Moodle 
site. You should set up a separate folder to contain them. 
 
HeatEqnFDExample_lab.m – primary script containing most of the required code 
f_lab.m – function that defines the initial temperature distribution f(x) 
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Note that you must change the file name of f_lab.m to f.m in order for the simulation to 
work properly. You may also change the name of HeatEqnFDExample_lab.m if you 
wish. (You might want to shorten it.) 
 
The m-files are heavily commented, and the places where you need to add code are clearly 
indicated. Edit the m-files, and then run a test case with the following conditions: 
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The other important parameters such as the boundary locations a and b, the thermal 
diffusivity of the material, the number of spatial steps and time steps, etc. are already coded 
near the top of the m-file. Note that this problem is the same as one of the early heat 
problems that we solved analytically when we began covering the SOV method. 

 
• Run your modified scripts to verify that the routine is stable and producing accurate results. 

If you run the code for 4000 time steps with the largest allowable time step for a stable 
solution, the last displayed solution should closely match the SOV solution of the same 
problem shown in Fig. 1. 
 
 

 
 

Figure 1. Separation-of-variables solution of the homogeneous 1-D heat equation 
problem at time t = 45 s for the indicated boundary conditions and initial 
condition. 
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• After you are confident that the Matlab script is working, execute it again with the new 
boundary conditions and initial condition f(x) given below with c = 0.01 m2/s.  
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where a = 1.0 m, b = 5.0 m, ua = 300 K, and ub = 400 K. Remember that the Matlab function 
that implements f(x) has to use element-by-element arithmetic operations (e.g., .* instead of * 
for multiplication; .^ instead of ^ for exponentiation). A plot of f(x) is shown in Fig. 2. Check 
that the solution evolves over time properly. 

 
 

 
 

Figure 2. Initial condition f(x) for the second heat equation problem. 
 
 
• Execute your code with the new boundary conditions and initial condition f(x) for a sufficient 

number of time steps so that the simulation time ends at t = 600 s. (Determine the number of 
time steps deterministically, not using trial-and-error.) This should be enough time for the 
solution to closely approach the steady-state condition. You may execute the code again with 
a greater number of time steps if you wish. Explain in comments added to your f.m file how 
you determined the required number of time steps to reach t = 600 s, and explain the physical 
basis for the steady-state temperature distribution at 600 s that you observe. That is, explain 
why the solution converges to that particular state. 

 
• Set the number of time steps back to 3000 or so, and change the time step size so that it is 

barely above the stability limit described in the “Theoretical Background” section. To begin 
with, set the time step so that 
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and observe the results. Set the value of ∆t a little higher (say, to 0.55) and observe the 
results again. In comments added to your f.m file, briefly describe what you observe and 
whether the solution you obtain represents physical behavior. 
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Lab Work Submission and Scoring 
 
Save copies of your edited HeatEqnFDExample_lab.m and f.m scripts. Change the names 
to LName_Lab9main_fa23.m and LName_Lab9f_fa23.m, where LName is your last 
name and “main” or “f” refers to the main script or f.m. Add comments to the f.m script in 
response to the various prompts above, which are repeated below: 
 

• how you determined the required number of time steps to reach t = 600 s 
• the physical basis for the observed steady-state temperature distribution 
• observations of solution behavior with a time step that exceeds the stability limit 
• comments on whether the solution you obtain for an unstable time step represents 

physical behavior 
 
E-mail your edited scripts with comments to me. 
 
Your score will be assigned according to the lab scoring rubric posted on the Laboratory page at 
the course web site.  
 
If you do not complete the exercises during the lab session, then you may submit your 
documentation as late as 11:59 pm on Friday, November 17. If the file is submitted after the 
deadline, a 5% score deduction will be applied for every 24 hours or portion thereof that the item 
is late (not including the days over Thanksgiving break) unless extenuating circumstances apply. 
No credit will be given five or more semester days after the deadline. 
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