

1 of 5

ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023

Lab #9: Explicit Finite Difference Solution of Heat Equation

Introduction

We have seen that many partial differential equations (PDEs) can be solved relatively easily via
the separation of variables (SOV) method, especially if their boundary conditions align with the
applicable coordinate system. Other problems, however, are very difficult or even impossible to
solve in this way. Examples include complicated nonhomogeneous problems and cases in which
the problem geometry is highly irregular and does not conform to an orthogonal coordinate
system. In these situations, it is often necessary to turn to some type of numerical method. While
numerical approaches are usually more versatile and often have simpler formulations than
analytical approaches like the SOV method, the downside is that they usually provide less
physical insight. Numerical solutions can have other practical limitations as well such as
requiring significant computational resources.

In this lab session, you will examine the solution of the heat equation using an explicit finite
difference method. You will have the opportunity to write the key parts of the code that
implement the algorithm and to observe how choices of various solution parameter values affect
its accuracy and stability.

Theoretical Background

A widely used numerical approach is the finite difference (FD) method, which approximates the
derivatives in a PDE using backward, forward, or centered finite differences. The FD method can
be either explicit, in which the dependent variable at each point in the solution space at each time
step is sequentially calculated using known quantities from the previous time step, or implicit, in
which the dependent variable at all points in the solution space are calculated simultaneously via
a system of equations (i.e., a matrix solution).

For example, an explicit FD solution of the one-dimensional heat equation described by

2

2 , and 0u uc a x b t
x t

∂ ∂
= ≤ ≤ ≥

∂ ∂
,

is

(), 1 1, , 1,1 2i j i j i j i ju C u C u C u+ + −= + − + , where 2
c tC

x
∆

=
∆

,

and where ui,j is the value of the dependent variable (heat or temperature) at the location xi =
a + (i – 1)∆x for i = 1, 2, 3, …, Nx, where Nx is the number of discrete points within the solution
space. Index j specifies the discrete moment in time t = j ∆t, and constant c is the thermal
diffusivity of the material.

Since the dependent variable u is evaluated only at a finite number (Nx) of discrete points in the
solution space, the values of u over the whole space at a given moment in time are stored in a
software vector of length Nx. The solution at all points within the space is then “updated” at each

2 of 5

new time step in the numerical routine using the expression for ui, j+1 given above, which is why
it is often referred to as an update equation. Note that the value of u at location i and time
(j + 1)∆t depends only on the values of u at the same or adjacent locations at the previous time
step (j ∆t), thus confirming that this is an explicit method.

Dirichlet boundary conditions such as

() (), ,a bu a t u u b t u= =

are treated in the FD solution simply by maintaining the values

1, ,xj a N j bu u u u= =

at all times, where again Nx is the number of spatial locations in the solution space. That is, the
first and last elements of the dependent variable vector are set equal to the values specified by
the boundary conditions at the beginning of the execution of the routine and are then left
unchanged. The update equation is not applied at those locations. The initial condition

() (), 0u x f x=

is accommodated by filling the solution vector at time t = 0 (corresponding to j = 0) with the
values of f(x) evaluated at each location within the solution space. That is,

(), 0 1 1, 2, 3, ,i xu f a i x i N = + − ∆ = .

A key disadvantage of most explicit methods is that they can become unstable if the relationship
between the spatial step size ∆x and the temporal step size ∆t is not constrained. An unstable
solution is one that grows unnaturally without bound and therefore represents nonphysical
behavior. For example, for the explicit FD update equation given above, the condition

2

2 0.5
2

c t xt
x c
∆ ∆

≤ → ∆ ≤
∆

must be satisfied to obtain a stable solution. The proof of the stability condition is beyond the
scope of this course but can be found in good textbooks on numerical methods.

Procedure

• Your assignment is to add a few lines of code to an incomplete Matlab m-file to solve a 1-D

heat distribution problem like the one described above using an explicit finite difference
method. Download the following Matlab m-files, which are available at the course Moodle
site. You should set up a separate folder to contain them.

HeatEqnFDExample_lab.m – primary script containing most of the required code
f_lab.m – function that defines the initial temperature distribution f(x)

3 of 5

Note that you must change the file name of f_lab.m to f.m in order for the simulation to
work properly. You may also change the name of HeatEqnFDExample_lab.m if you
wish. (You might want to shorten it.)

The m-files are heavily commented, and the places where you need to add code are clearly
indicated. Edit the m-files, and then run a test case with the following conditions:

() () () () 2 20, 0 , 0 , 0 100sin xu t u b t u x f x
b a

π = = = = −

The other important parameters such as the boundary locations a and b, the thermal
diffusivity of the material, the number of spatial steps and time steps, etc. are already coded
near the top of the m-file. Note that this problem is the same as one of the early heat
problems that we solved analytically when we began covering the SOV method.

• Run your modified scripts to verify that the routine is stable and producing accurate results.

If you run the code for 4000 time steps with the largest allowable time step for a stable
solution, the last displayed solution should closely match the SOV solution of the same
problem shown in Fig. 1.

Figure 1. Separation-of-variables solution of the homogeneous 1-D heat equation
problem at time t = 45 s for the indicated boundary conditions and initial
condition.

Initial Condition

Temperature
Distribution
at 45 s

4 of 5

• After you are confident that the Matlab script is working, execute it again with the new
boundary conditions and initial condition f(x) given below with c = 0.01 m2/s.

() () () () ()()21, 300 5, 400 30b a
a b a

u uu t u u t u f x u x a x a x b
b a

−
= = = = = + − + − −

−
,

where a = 1.0 m, b = 5.0 m, ua = 300 K, and ub = 400 K. Remember that the Matlab function
that implements f(x) has to use element-by-element arithmetic operations (e.g., .* instead of *
for multiplication; .^ instead of ^ for exponentiation). A plot of f(x) is shown in Fig. 2. Check
that the solution evolves over time properly.

Figure 2. Initial condition f(x) for the second heat equation problem.

• Execute your code with the new boundary conditions and initial condition f(x) for a sufficient

number of time steps so that the simulation time ends at t = 600 s. (Determine the number of
time steps deterministically, not using trial-and-error.) This should be enough time for the
solution to closely approach the steady-state condition. You may execute the code again with
a greater number of time steps if you wish. Explain in comments added to your f.m file how
you determined the required number of time steps to reach t = 600 s, and explain the physical
basis for the steady-state temperature distribution at 600 s that you observe. That is, explain
why the solution converges to that particular state.

• Set the number of time steps back to 3000 or so, and change the time step size so that it is

barely above the stability limit described in the “Theoretical Background” section. To begin
with, set the time step so that

2

2 0.505 0.505c t xt
x c
∆ ∆

= → ∆ =
∆

,

and observe the results. Set the value of ∆t a little higher (say, to 0.55) and observe the
results again. In comments added to your f.m file, briefly describe what you observe and
whether the solution you obtain represents physical behavior.

5 of 5

Lab Work Submission and Scoring

Save copies of your edited HeatEqnFDExample_lab.m and f.m scripts. Change the names
to LName_Lab9main_fa23.m and LName_Lab9f_fa23.m, where LName is your last
name and “main” or “f” refers to the main script or f.m. Add comments to the f.m script in
response to the various prompts above, which are repeated below:

• how you determined the required number of time steps to reach t = 600 s
• the physical basis for the observed steady-state temperature distribution
• observations of solution behavior with a time step that exceeds the stability limit
• comments on whether the solution you obtain for an unstable time step represents

physical behavior

E-mail your edited scripts with comments to me.

Your score will be assigned according to the lab scoring rubric posted on the Laboratory page at
the course web site.

If you do not complete the exercises during the lab session, then you may submit your
documentation as late as 11:59 pm on Friday, November 17. If the file is submitted after the
deadline, a 5% score deduction will be applied for every 24 hours or portion thereof that the item
is late (not including the days over Thanksgiving break) unless extenuating circumstances apply.
No credit will be given five or more semester days after the deadline.

© 2018–2023 David F. Kelley, Bucknell University, Lewisburg, PA 17837.

	Procedure

