Lecture Outline for Friday, Nov. 10

1. Unfinished business: Animation of vibrating drumhead (wave equation in cylindrical coordinates)
2. Finite difference example: For $f(x)=e^{x}$, approximate $f^{\prime}(1.2)$ using centered finite differences with $\Delta x=0.1,0.05$, and 0.01 . Exact result (to 5 sig. digs.) is $f^{\prime}(1.2)=3.3201$.
a. $\quad \Delta x=0.1: \quad f^{\prime}(1.2) \approx \frac{f(1.2+0.05)-f(1.2-0.05)}{0.1}=\frac{e^{1.25}-e^{1.15}}{0.1}=3.3215$
b. $\Delta x=0.05: \quad f^{\prime}(1.2) \approx \frac{f(1.2+0.025)-f(1.2-0.025)}{0.05}=\frac{e^{1.255}-e^{1.175}}{0.05}=3.3205$
c. $\Delta x=0.01: \quad f^{\prime}(1.2) \approx \frac{f(1.2+0.005)-f(1.2-0.005)}{0.01}=\frac{e^{1.205}-e^{1.195}}{0.01}=3.3201$
3. Application: Finite difference solution of the heat equation

$$
c \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad \text { where } c=\text { thermal diffusivity }
$$

a. Questions:
i. What do finite difference approximations look like when there is more than one independent variable?
ii. How many solution points (in x and in t) do we select?
iii. What do we do about the boundaries?
b. Finite difference approximations of partial derivatives (hold nondifferentiated variable constant)

$$
\frac{\partial^{2} u(x, t)}{\partial x^{2}} \approx \frac{u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)}{\Delta x^{2}} \text { and } \frac{\partial(x, t)}{\partial t} \approx \frac{u(x, t+\Delta t)-u(x, t)}{\Delta t}
$$

c. Note that the x-derivative is approximated using a centered difference and the time derivative by a forward difference. We will see why very soon.
d. Heat equation expressed using finite differences

$$
c \frac{u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)}{\Delta x^{2}}=\frac{u(x, t+\Delta t)-u(x, t)}{\Delta t}
$$

e. Need to define discrete points in space and time at which the dependent variable u is calculated. The arrays of points are called spatial and time grids or meshes.
i. Solution space is along x-axis between boundaries $x=a$ and $x=b$.
ii. Time assumed to begin at $t=0$.
iii. Space and time are discretized into N_{x} and N_{t} points, respectively:

$$
\begin{gathered}
x_{i}=a+(i-1) \Delta x, \quad i=1,2,3, \ldots, N_{x} \quad \text { where } \quad \Delta x=\frac{b-a}{N_{x}-1} \\
t_{j}=j \Delta t, \quad j=0,1,2,3, \ldots,\left(N_{t}-1\right)
\end{gathered}
$$

f. There is a constraint on Δt (examined soon).
g. Finite difference subscript notation:

$$
\begin{aligned}
u(x, t)=u_{i, j} \quad u(x+\Delta x, t) & =u_{i+1, j} \quad u(x-\Delta x, t)
\end{aligned}=u_{i-1, j} \quad u(x, t+\Delta t)=u_{i, j+1} .
$$

h. Four of the five terms in FD form of equation are defined at time t (index j), but one is defined at time $t+\Delta t$ (index $j+1$). Isolate that term on the left-hand side and move the rest to the right-hand side to form an update equation:

$$
u_{i, j+1}-u_{i, j}=\frac{c \Delta t}{\Delta x^{2}}\left[u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right] \rightarrow u_{i, j+1}=\frac{c \Delta t}{\Delta x^{2}} u_{i+1, j}+\left(1-2 \frac{c \Delta t}{\Delta x^{2}}\right) u_{i, j}+\frac{c \Delta t}{\Delta x^{2}} u_{i-1, j}
$$

i. This is an explicit FD method. The newest value of u at location i depends only on previous values and no values at other locations at the new time. That is, there is only one term at time index $j+1$. A system of simultaneous equations is not required.
i. This works because the time derivative was approximated using a forward difference.
ii. Backward difference in time leads to u values evaluated at multiple adjacent locations at the same time, which would require a matrix solution. (Try it!)
iii. Centered difference is troublesome because it requires a "look-back" in time. Starting the solution at $t=0$ is challenging (how to handle $t-\Delta t$ term?).

$$
c \frac{u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)}{\Delta x^{2}}=\frac{u(x, t+\Delta t)-u(x, t-\Delta t)}{2 \Delta t}
$$

4. Boundary and initial conditions
a. Dirichlet BCs are simple: $u(a, t)=u_{1, j}=u_{a} \quad$ and $\quad u(b, t)=u_{N_{x} j}=u_{b}$, where u_{a} and u_{b} are constants (zero for homogeneous BCs)
b. Neumann BCs are more challenging (later)
c. Initial condition: $u(x, 0)=u_{i, 0}=f\left(x_{i}\right)$
