Lecture Outline for Monday, Nov. 13

1. Finite difference solution of the heat equation (continued)

$$
c \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad \text { where } c=\text { thermal diffusivity }
$$

a. Heat equation expressed using finite differences

$$
c \frac{u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)}{\Delta x^{2}}=\frac{u(x, t+\Delta t)-u(x, t)}{\Delta t}
$$

b. Define discrete points in space and time at which the dependent variable u is calculated. The arrays of points are called spatial and time grids or meshes.
i. Solution space is along x-axis between boundaries $x=a$ and $x=b$.
ii. Calculation time begins at $t=0$.
iii. Space and time are discretized into N_{x} and N_{t} points, respectively:

$$
\begin{gathered}
x_{i}=a+(i-1) \Delta x, \quad i=1,2,3, \ldots, N_{x} \quad \text { where } \quad \Delta x=\frac{b-a}{N_{x}-1} \\
t_{j}=j \Delta t, \quad j=0,1,2,3, \ldots,\left(N_{t}-1\right)
\end{gathered}
$$

c. There is a constraint on Δt (examined soon).
d. Finite difference subscript notation:

$$
\begin{gathered}
u(x, t)=u_{i, j} \quad u(x+\Delta x, t)=u_{i+1, j} \quad u(x-\Delta x, t)=u_{i-1, j} \quad u(x, t+\Delta t)=u_{i, j+1} \\
c \frac{u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)}{\Delta x^{2}}=\frac{u(x, t+\Delta t)-u(x, t)}{\Delta t} \\
\rightarrow c \frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{\Delta x^{2}}=\frac{u_{i, j+1}-u_{i, j}}{\Delta t}
\end{gathered}
$$

e. Four of the five terms in FD form of equation are defined at time t (index j), but one is defined at time $t+\Delta t$ (index $j+1$). Isolate that term on the left-hand side and move the rest to the right-hand side to form an update equation:

$$
u_{i, j+1}-u_{i, j}=\frac{c \Delta t}{\Delta x^{2}}\left[u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right] \rightarrow u_{i, j+1}=\frac{c \Delta t}{\Delta x^{2}} u_{i+1, j}+\left(1-2 \frac{c \Delta t}{\Delta x^{2}}\right) u_{i, j}+\frac{c \Delta t}{\Delta x^{2}} u_{i-1, j}
$$

f. This is an explicit FD method. The newest value of u at location i depends only on previous values and no values at other locations at the new time. That is, there is only one term at time index $j+1$. A system of simultaneous equations is not required to find u everywhere.
g. To improve computational efficiency (i.e., to minimize floating-point operations):
i. Group like terms (for particular space and time indices) together.
ii. Pre-calculate the coefficients and store them.

$$
u_{i, j+1}=c_{1} u_{i+1, j}+c_{2} u_{i, j}+c_{3} u_{i-1, j}, \quad \text { where } \quad c_{1}=c_{3}=\frac{c \Delta t}{\Delta x^{2}} \quad \text { and } \quad c_{2}=1-2 \frac{c \Delta t}{\Delta x^{2}}
$$

2. Boundary and initial conditions
a. Dirichlet BCs are simple:

$$
u(a, t)=u_{1, j}=u_{a} \quad \text { and } \quad u(b, t)=u_{N_{x}, j}=u_{b},
$$

where u_{a} and u_{b} are constants (zero for homogeneous BCs)
b. Neumann BCs are more challenging (later)
c. Initial condition: $u(x, 0)=u_{i, 0}=f\left(x_{i}\right)$
3. Problem set-up and stability condition
a. Define grid of solution points: $x_{i}=a+(i-1) \Delta x, \quad i=1,2,3, \ldots, N_{x}$
b. Boundaries at $i=1$ and $i=N_{x}$
c. Define u vector to hold solution at each time step. In Matlab, u $=\operatorname{zeros}(1: \mathrm{Nx})$
d. Initial condition: $u_{i}=f\left(x_{i}\right), \quad i=1,2,3, \ldots, N_{x}$.

In Matlab, $\mathrm{u}=\mathrm{f}(\mathrm{a}+\mathrm{Dx*}((1: \mathrm{Nx})-1))$
e. Stability requirement (from von Neumann stability analysis, not covered in this course):

$$
\frac{c \Delta t}{\Delta x^{2}} \leq \frac{1}{2} \quad \rightarrow \quad \Delta t \leq \frac{\Delta x^{2}}{2 c}
$$

f. Limitation of explicit methods: Stability requirement places an upper limit on Δt, which could cause excessively long execution times
g. Algorithm:
i. Apply update equation for u at every interior solution point (i.e., all x locations except the boundaries) to calculate u everywhere at next time step. Most mathematical software, including Matlab, has "vectorized" arithmetic operations that can do this more efficiently than a loop. See example below.
ii. Advance time by Δt and compute new values for u everywhere. Repeat every Δt and continue until $j=N_{t}$ (last time step).
iii. Store and/or display u at each time step or at reasonable intervals.
h. Comparison of vectorized and nonvectorized algorithms (Matlab) to implement update equation

$$
u_{i, j+1}=c_{1} u_{i+1, j}+c_{2} u_{i, j}+c_{3} u_{i-1, j}, \quad \text { where } \quad c_{1}=c_{3}=\frac{c \Delta t}{\Delta x^{2}} \quad \text { and } \quad c_{2}=1-2 \frac{c \Delta t}{\Delta x^{2}}
$$

Nonvectorized

```
for j = 1:Nt
    for i = 2:(Nx-1)
        u(i) = c1*u(i+1) + c2*u(i) + c3*u(i-1);
    end
end
```


Vectorized

```
for j = 1:Nt
    u(2:(Nx-1)) = c1*u(3:Nx) + c2*u(2:(Nx-1)) + c3*u(1:(Nx-2))
end
```

