
ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023

Lecture Outline for Monday, Nov. 13

1. Finite difference solution of the heat equation (continued)

2

2

u uc
x t
∂ ∂

=
∂ ∂

, where c = thermal diffusivity

a. Heat equation expressed using finite differences

() () () () ()

2

, 2 , , , ,u x x t u x t u x x t u x t t u x t
c

x t
+ ∆ − + −∆ + ∆ −

=
∆ ∆

b. Define discrete points in space and time at which the dependent variable u is

calculated. The arrays of points are called spatial and time grids or meshes.
i. Solution space is along x-axis between boundaries x = a and x = b.

ii. Calculation time begins at t = 0.
iii. Space and time are discretized into Nx and Nt points, respectively:

()1ix a i x= + − ∆ , 1, 2, 3, , xi N= where
1x

b ax
N
−

∆ =
−

jt j t= ∆ , ()0,1, 2, 3, , 1tj N= −

c. There is a constraint on ∆t (examined soon).
d. Finite difference subscript notation:

() () () (), 1, 1, , 1, , , ,i j i j i j i ju x t u u x x t u u x x t u u x t t u+ − += + ∆ = −∆ = + ∆ =

() () () () ()

2

1, , 1, , 1 ,
2

, 2 , , , ,

2i j i j i j i j i j

u x x t u x t u x x t u x t t u x t
c

x t
u u u u u

c
x t

+ − +

+ ∆ − + −∆ + ∆ −
=

∆ ∆
− + −

→ =
∆ ∆

e. Four of the five terms in FD form of equation are defined at time t (index j), but one

is defined at time t + ∆t (index j + 1). Isolate that term on the left-hand side and move
the rest to the right-hand side to form an update equation:

, 1 , 1, , 1, , 1 1, , 1,2 2 2 22 1 2i j i j i j i j i j i j i j i j i j
c t c t c t c tu u u u u u u u u

x x x x+ + − + + −

∆ ∆ ∆ ∆ − = − + → = + − + ∆ ∆ ∆ ∆

(continued on next page)

f. This is an explicit FD method. The newest value of u at location i depends only on
previous values and no values at other locations at the new time. That is, there is only
one term at time index j + 1. A system of simultaneous equations is not required to
find u everywhere.

g. To improve computational efficiency (i.e., to minimize floating-point operations):
i. Group like terms (for particular space and time indices) together.

ii. Pre-calculate the coefficients and store them.

, 1 1 1, 2 , 3 1,i j i j i j i ju c u c u c u+ + −= + + , where 1 3 22 2and 1 2c t c tc c c
x x
∆ ∆

= = = −
∆ ∆

2. Boundary and initial conditions

a. Dirichlet BCs are simple:

() 1,, j au a t u u= = and () ,,
xN j bu b t u u= = ,

where ua and ub are constants (zero for homogeneous BCs)

b. Neumann BCs are more challenging (later)
c. Initial condition: () (),0,0 i iu x u f x= =

3. Problem set-up and stability condition

a. Define grid of solution points: ()1ix a i x= + − ∆ , 1, 2, 3, , xi N=
b. Boundaries at i = 1 and i = Nx
c. Define u vector to hold solution at each time step. In Matlab, u = zeros(1:Nx)
d. Initial condition: ()i iu f x= , 1, 2, 3, , xi N= .

In Matlab, u = f(a + Dx*((1:Nx) – 1))
e. Stability requirement (from von Neumann stability analysis, not covered in this

course):
2

2

1
2 2

c t xt
x c
∆ ∆

≤ → ∆ ≤
∆

f. Limitation of explicit methods: Stability requirement places an upper limit on ∆t,

which could cause excessively long execution times
g. Algorithm:

i. Apply update equation for u at every interior solution point (i.e., all x
locations except the boundaries) to calculate u everywhere at next time step.
Most mathematical software, including Matlab, has “vectorized” arithmetic
operations that can do this more efficiently than a loop. See example below.

ii. Advance time by ∆t and compute new values for u everywhere. Repeat every
∆t and continue until j = Nt (last time step).

iii. Store and/or display u at each time step or at reasonable intervals.

(continued on next page)

h. Comparison of vectorized and nonvectorized algorithms (Matlab) to implement
update equation

, 1 1 1, 2 , 3 1,i j i j i j i ju c u c u c u+ + −= + + , where 1 3 22 2and 1 2c t c tc c c
x x
∆ ∆

= = = −
∆ ∆

Nonvectorized

for j = 1:Nt
 for i = 2:(Nx-1)
 u(i) = c1*u(i+1) + c2*u(i) + c3*u(i–1);
 end
end

Vectorized

for j = 1:Nt
 u(2:(Nx–1)) = c1*u(3:Nx) + c2*u(2:(Nx–1)) + c3*u(1:(Nx–2))
end

	ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023

