Lecture Outline for Friday, Sept. 15

1. Eigensystem insights and expectations
a. Simple eigensystem has N distinct eigenvalues, N linearly independent eigenvectors
b. $A \mathbf{x}_{i}=\lambda \mathbf{x}_{i} \rightarrow A X=X \Lambda$
c. Eigenvalues of upper and lower-triangular matrices are the diagonal values
d. Eigenvalues of diagonal matrices are the diagonal values
2. Example: Compute eigenvalues and eigenvectors of A

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

3. Some basic theorems
a. If A is square with real entries, then any complex eigenvalues/eigenvectors come in conjugate pairs.
b. If A is square, then 0 is an eigenvalue only iff A is singular.
c. $\operatorname{det}(A)=\lambda_{1} \lambda_{2} \lambda_{3} \ldots \lambda_{N}$
d. If A is nonsingular and λ is an eigenvalue, then $1 / \lambda$ is an eigenvalue of A^{-1}; both eigenvalues have the same corresponding eigenvectors.
e. Eigenvalues of upper/lower-triangular and diagonal matrices are the diagonal values.
4. Important special cases
a. Symmetric matrices $\left(A^{T}=A\right)$ behave well
i. Eigenvalues are real; all eigenvectors are linearly independent (LI)
ii. Distinct eigenvalues \rightarrow orthogonal eigenvectors (also LI)
iii. Repeated eigenvalues \rightarrow LI eigenvectors but might not be orthogonal
iv. Linearly independent \neq orthogonal
v. Symmetric matrices can be singular and therefore have at least one zero eigenvalue; even so, all eigenvectors are LI.
b. Orthogonal matrices $\left(A^{-1}=A^{T}\right.$, which implies that $\left.A^{T} A=I\right)$
i. A is orthogonal iff its columns form an orthonormal set (orthonormal is orthogonal with each vector having a length of 1; i.e., $|\mathbf{x}|=\mathbf{x}^{T} \mathbf{x}=1$)
ii. Orthogonal matrices are not usually symmetric (The only orthogonal and symmetric matrix is I because a matrix that is both satisfies $A^{-1}=A^{T}=A$.)
iii. Example: Check that $A^{-1}=A^{T}$ and that each column is normalized

$$
A=\left[\begin{array}{ccc}
\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\
-\frac{2}{3} & \frac{1}{3} & \frac{2}{3}
\end{array}\right]
$$

5. Where we are heading: $L U$ and $Q R$ factorizations and the SVD
