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1. Important general form of ODE: the regular Sturm-Liouville equation 
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subject to homogeneous boundary conditions defined over interval [a, b]: 
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a. some textbooks use p(x) for r(x) and w(x) for p(x) 
b. second-order with variable coefficients 
c. form above is called “self-adjoint” form 
d. λ is a parameter in the problem (eigenvalue) 
e. r(x), p(x) > 0 on interval of solution 
f. importance for our purposes: 

i. guarantees orthogonality, completeness, representation (see supplemental 
reading “Sturm-Liouville Problems: Eigenfunction Orthogonality”) 

ii. function p(x) defines kernel for inner product 
 
2. The “Sturm-Liouville Insurance Policy” (SLIP) 
 

a. There are non-trivial solutions for specific values of the parameter λ (eigenvalues). 
b. There is an infinity of eigenvalues. 
c. There is a smallest but not a largest eigenvalue. 
d. The eigenvalues are real and distinct (λ1 < λ2 < λ3 < … such that λn → ∞ as n → ∞). 
e. For each eigenvalue there is a single solution (eigenfunction) yn(x) 
f. The eigenfunctions corresponding to two different eigenvalues are orthogonal with 

respect to the weight function p(x) on the interval [a, b]. That is, 
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g. The set of solutions to an S-L problem are complete in that the set forms a basis for 

the space of square-integrable functions on the interval [a, b]. 
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Proof: 
 
Multiply both sides of weighted sum expression by ym(x) and evaluate the inner 
product. Don’t forget the “weight” function p(x): 
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Because of the SLIP, we know that the eigenfunctions yn(x) are orthogonal. Thus, 
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Expressed in inner product notation, 
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The expression for an on the previous page follows after changing the index from m 
to n. 

 
3. The SLIP is such a valuable set of properties that it is worth determining whether a given 

problem is a Sturm-Liouville problem. Examples: 
 

a. Is 0y yλ′′ + =  a S-L equation? 
b. Is 0y yλ′′ − =  a S-L equation? 
c. Is 0y xyλ′′ − =  a S-L equation? 
d. Is ( )2 2 2 0x y xy x yλ ν′′ ′+ + − =  a S-L equation? 

e. Is ( ) ( ) ( ) ( ) 0a x y b x y c x y d x yλ′′ ′+ + + =  a S-L equation? 
 
4. Converting second-order ODEs to self-adjoint Sturm-Liouville form 
 

a. A second-order ODE of the form 
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can be converted to the equivalent Sturm-Liouville equation in adjoint form  
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b. Conversion steps: 
 

i. Compute the integrating factor µ(x) (watch out for a(x) = 0 for any x over the 
bounded interval): 
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ii. Compute the elements of the S-L adjoint form: 
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iii. Verify that r(x), p(x) > 0 on interval of solution 

 
5. Example: Convert parametric Bessel’s equation to Sturm-Liouville equation in self-adjoint 

form: 
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Self-adjoint form of Bessel’s equation: 
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Significance: We now know the kernel p(x) used in the inner product; p(x) = x. 
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