ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023

Lecture Outline for Friday, Nov. 17

1. FD solutions of wave equation: computational considerations

a. Accuracy generally improves as spatial step size Ax and/or time step size At is
decreased, although not always (e.g., CFL condition is most accurate setting for At in
explicit FD solution of wave equation)

b. Grid dispersion: artificial change in velocity (usually frequency dependent or pulse
rise/fall time dependent) due to discretization in space; reduce via small spatial step
sizes

c. Grid dissipation: artificial attenuation (usually frequency dependent or pulse rise/fall
time dependent) due to discretization in space; reduce via small spatial step sizes

d. Finite precision of computer representation of numbers becomes a problem for very
small step sizes

2. FD solutions in non-Cartesian coordinate systems
a. Challenging due to more complicated expressions and variable step sizes
b. Often better to use Cartesian system and then apply a staircase approximation to
irregular boundaries or interfaces between materials

3. Multiple materials in solution space:

a. Additional interior boundary conditions might be necessary at interfaces
b. Some FD methods inherently account for interior boundaries

4. Open boundaries in FD solution of wave equation

a. One-way wave equation
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b. First factor describes a leftward traveling wave (in —x direction), and second factor
describes a rightward traveling wave (in +x direction)

c. Apply one of the two operators in parentheses at each boundary, which yields an open
boundary condition (example: x = a case, where waves should propagate out of space
in the —x direction):
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d. FD form of one-way wave equation at boundary (centered at x =aori=1)
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leads to, after solving for uoj, special update equation used only at the x = a (left-
most) boundary
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e. Similar update equation for use only at the x = b (right-most) boundary. Start with
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f. Special case for first time step, j = 0. Start with initial condition applied at x = a:
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which leads to
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g. Similar result for j = 0 at x = b, the right-most boundary:
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5. Next: Finite difference solution of the heat equation with Neumann BCs
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where uxa and ux, are usually constants but could be time varying
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