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1. FD solutions of wave equation: computational considerations 
 

a. Accuracy generally improves as spatial step size ∆x and/or time step size ∆t is 
decreased, although not always (e.g., CFL condition is most accurate setting for ∆t in 
explicit FD solution of wave equation) 

b. Grid dispersion: artificial change in velocity (usually frequency dependent or pulse 
rise/fall time dependent) due to discretization in space; reduce via small spatial step 
sizes 

c. Grid dissipation: artificial attenuation (usually frequency dependent or pulse rise/fall 
time dependent) due to discretization in space; reduce via small spatial step sizes 

d. Finite precision of computer representation of numbers becomes a problem for very 
small step sizes 

 
2. FD solutions in non-Cartesian coordinate systems 
 

a. Challenging due to more complicated expressions and variable step sizes 
b. Often better to use Cartesian system and then apply a staircase approximation to 

irregular boundaries or interfaces between materials 
 
3. Multiple materials in solution space: 
 

a. Additional interior boundary conditions might be necessary at interfaces 
b. Some FD methods inherently account for interior boundaries 

 
4. Open boundaries in FD solution of wave equation 
 

a. One-way wave equation 
 

2 2 2 2 2 2
2 2 2

2 2 2 2 2 20 0 0u u u uv v v u v v u
x t x t x t x t x t

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  = → − = → − = → − + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

 
b. First factor describes a leftward traveling wave (in −x direction), and second factor 

describes a rightward traveling wave (in +x direction) 
c. Apply one of the two operators in parentheses at each boundary, which yields an open 

boundary condition (example: x = a case, where waves should propagate out of space 
in the −x direction): 
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(continued on next page) 

 



d. FD form of one-way wave equation at boundary (centered at x = a or i = 1) 
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leads to, after solving for u0,j, special update equation used only at the x = a (left-
most) boundary 
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e. Similar update equation for use only at the x = b (right-most) boundary. Start with 
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f. Special case for first time step, j = 0. Start with initial condition applied at x = a: 
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which leads to 
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g. Similar result for j = 0 at x = b, the right-most boundary: 
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5. Next: Finite difference solution of the heat equation with Neumann BCs 
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where uxa and uxb are usually constants but could be time varying 

 


	ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023

