Lecture Outline for Friday, Nov. 17

1. FD solutions of wave equation: computational considerations
a. Accuracy generally improves as spatial step size Δx and/or time step size Δt is decreased, although not always (e.g., CFL condition is most accurate setting for Δt in explicit FD solution of wave equation)
b. Grid dispersion: artificial change in velocity (usually frequency dependent or pulse rise/fall time dependent) due to discretization in space; reduce via small spatial step sizes
c. Grid dissipation: artificial attenuation (usually frequency dependent or pulse rise/fall time dependent) due to discretization in space; reduce via small spatial step sizes
d. Finite precision of computer representation of numbers becomes a problem for very small step sizes
2. FD solutions in non-Cartesian coordinate systems
a. Challenging due to more complicated expressions and variable step sizes
b. Often better to use Cartesian system and then apply a staircase approximation to irregular boundaries or interfaces between materials
3. Multiple materials in solution space:
a. Additional interior boundary conditions might be necessary at interfaces
b. Some FD methods inherently account for interior boundaries
4. Open boundaries in FD solution of wave equation
a. One-way wave equation
$v^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}} \rightarrow v^{2} \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial t^{2}}=0 \rightarrow\left(v^{2} \frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial t^{2}}\right) u=0 \rightarrow\left(v \frac{\partial}{\partial x}-\frac{\partial}{\partial t}\right)\left(v \frac{\partial}{\partial x}+\frac{\partial}{\partial t}\right) u=0$
b. First factor describes a leftward traveling wave (in $-x$ direction), and second factor describes a rightward traveling wave (in $+x$ direction)
c. Apply one of the two operators in parentheses at each boundary, which yields an open boundary condition (example: $x=a$ case, where waves should propagate out of space in the $-x$ direction):

$$
\left(v \frac{\partial}{\partial x}-\frac{\partial}{\partial t}\right) u=\left.0 \rightarrow \frac{\partial u}{\partial x}\right|_{x=a}=\left.\frac{1}{v} \frac{\partial u}{\partial t}\right|_{x=a}
$$

d. FD form of one-way wave equation at boundary (centered at $x=a$ or $i=1$)

$$
\frac{u_{2, j}-u_{0, j}}{2 \Delta x}=\frac{1}{v}\left(\frac{u_{1, j+1}-u_{1, j-1}}{2 \Delta t}\right)
$$

leads to, after solving for $u_{0, j}$, special update equation used only at the $x=a$ (leftmost) boundary

$$
\begin{gathered}
u_{1, j+1}=\frac{2 C^{2}}{1+C} u_{2, j}+2(1-C) u_{1, j}-\frac{1-C}{1+C} C u_{1, j-1}, \\
\text { where } C=\frac{v \Delta t}{\Delta x}
\end{gathered}
$$

e. Similar update equation for use only at the $x=b$ (right-most) boundary. Start with

$$
\left.\frac{\partial u}{\partial x}\right|_{x=b}=-\left.\frac{1}{v_{p}} \frac{\partial u}{\partial t}\right|_{x=b}
$$

to obtain

$$
u_{N_{x}, j+1}=2(1-C) u_{N_{x}, j}+\frac{2 C^{2}}{1+C} u_{N_{x}-1, j}-\frac{1-C}{1+C} u_{N_{x}, j-1}
$$

f. Special case for first time step, $j=0$. Start with initial condition applied at $x=a$:

$$
g(a)=\left.\frac{\partial u}{\partial t}\right|_{t=0} \approx \frac{u(a, 0+\Delta t)-u(a, 0-\Delta t)}{2 \Delta t}=\frac{u_{1,1}-u_{1,-1}}{2 \Delta t},
$$

which leads to

$$
u_{1,1}=C^{2} u_{2,0}+\left(1-C^{2}\right) u_{1,0}+(1-C) \Delta t g(a)
$$

g. Similar result for $\mathrm{j}=0$ at $x=b$, the right-most boundary:

$$
u_{N_{x}, 1}=\left(1-C^{2}\right) u_{N_{x}, 0}+C^{2} u_{N_{x}-1,0}+(1-C) \Delta t g(b)
$$

5. Next: Finite difference solution of the heat equation with Neumann BCs

$$
c \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad \text { with }\left.\quad \frac{\partial u}{\partial x}\right|_{x=a}=u_{x a} \quad \text { and }\left.\quad \frac{\partial u}{\partial x}\right|_{x=b}=u_{x b},
$$

where $u_{x a}$ and $u_{x b}$ are usually constants but could be time varying

