Lecture Outline for Friday, Sept. 1

1. Solvability of M-by- N systems (see flowchart in Fig. 8.3.1)
a. $\quad M=$ no. of equations; $N=$ no. of unknowns
b. $\quad r=\operatorname{rank}(A)=\operatorname{rank}(A \mid \mathbf{b})$: consistent \& solution possible
i. $r=N$: unique solution
ii. $r<N$: infinitely many solutions
c. $r=\operatorname{rank}(A)<\operatorname{rank}(A \mid \mathbf{b})$: inconsistent \& no solution possible
d. One more thing: $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$
2. Triangulation example:
a. boat at location $\left(x_{o}, y_{o}\right)$ - two unknowns x_{o} and y_{o}
b. direction finders at locations $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ - coordinates are known
c. $\quad \theta=$ angle to boat relative to axis joining the direction finders
d. System of equations:

$$
\left[\begin{array}{ll}
\sin \theta_{1} & -\cos \theta_{1} \\
\sin \theta_{2} & -\cos \theta_{2}
\end{array}\right]\left[\begin{array}{l}
x_{o} \\
y_{o}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \sin \theta_{1}-y_{1} \cos \theta_{1} \\
x_{2} \sin \theta_{2}-y_{2} \cos \theta_{2}
\end{array}\right]
$$

e. If $\theta_{1} \neq \theta_{2}$, then rank $=2$ and boat can be located. If $\theta_{1}=\theta_{2}$, then rank $=1$ and location is indeterminate. Latter case occurs if boat lies along line joining the two direction finders.
3. Generality \#1: Overdetermined systems are usually (but not always) inconsistent.

Examples: $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3 \\ 1 & 1\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}3 \\ 7 \\ 2\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$
Although an overdetermined system might not have an exact solution, it could still have a "best" approximate solution.
4. Generality \#2: Underdetermined systems are usually (but not always) consistent:

Examples: $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 1 & 3 & 5\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}7 \\ 9\end{array}\right]$

$$
A=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 4 & 8
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
7 \\
3
\end{array}\right]
$$

Underdetermined systems can have infinitely many solutions or no solution but never a unique solution because $\operatorname{rank}(A) \leq M<N$ always.
5. New topic: Curve-fitting and the method of least squares
a. Start with an example. Consider the following small data set. How can we estimate the value of $y(3)$, that is, the value of y at $x=3$?

i	x_{i}	y_{i}
1	1.0	1.1
2	2.0	3.2
3	4.0	5.2

b. One possible approach: Set up a matrix expression that computes the coefficients of the quadratic expression for a curve that passes through the data points.

$$
y=c_{0}+c_{1} x+c_{2} x^{2}
$$

Is the matrix equation solvable?
If so, is the solution acceptable?
c. Another possible approach: Set up a matrix expression that computes the coefficients of the linear expression for a line that passes through the data points.

$$
y=c_{0}+c_{1} x
$$

Is the matrix equation solvable?
If so, is the solution acceptable?
d. Next: a general approach applicable to any set of functions or curves

