Lecture Outline for Friday, Oct. 20

1. Orthogonality conditions on solutions to Sturm-Liouville problem
a. Consider the Sturm-Liouville equation in self-adjoint form for two different eigenvalues

$$
\begin{aligned}
& \frac{d}{d x}\left[r(x) \frac{d y_{m}}{d x}\right]+q(x) y_{m}+\lambda_{m} p(x) y_{m}=0 \\
& \frac{d}{d x}\left[r(x) \frac{d y_{n}}{d x}\right]+q(x) y_{n}+\lambda_{n} p(x) y_{n}=0
\end{aligned}
$$

b. Multiplying the first equation by y_{n} and the second by y_{m}, subtracting the two equations, and finally integrating by parts from $x=a$ to $x=b$ yields

$$
\begin{aligned}
\left(\lambda_{m}-\lambda_{n}\right) \int_{a}^{b} p(x) y_{m}(x) y_{n}(x) d x & =r(b)\left[y_{m}(b) y_{n}^{\prime}(b)-y_{n}(b) y_{m}^{\prime}(b)\right] \\
& -r(a)\left[y_{m}(a) y_{n}^{\prime}(a)-y_{n}(a) y_{m}^{\prime}(a)\right]
\end{aligned}
$$

c. Note that the left-hand side includes the inner product. One implication of this result is that the boundary conditions must be homogenous if the solutions y_{m} and y_{n} are to be orthogonal. If $m \neq n$ and the BCs are homogeneous, then the right-hand side equals zero. (See item \#4 below.)
d. Another implication is that y_{m} and y_{n} can be orthogonal if $r(x)=0$ at one of the boundaries and the BC at the other boundary is homogeneous.
2. Singular Sturm-Liouville problem
a. Addresses cases when $r(x)>0$ is not satisfied at one or both boundaries
b. Right-hand side of equation in item 1 b above is zero when:
i. $\quad r(a)=0$ and $y_{m}(b) y_{n}^{\prime}(b)-y_{n}(b) y_{m}^{\prime}(b)=0$
ii. $r(b)=0$ and $y_{m}(a) y_{n}^{\prime}(a)-y_{n}(a) y_{m}^{\prime}(a)=0$
iii. $r(a)=r(b)=0$ and no BCs are specified at $x=a$ or $x=b$
iv. $r(a)=r(b)$ and the BCs are $y(a)=y(b)$ and $y^{\prime}(a)=y^{\prime}(b)$ (periodic BCs)
v. Caveat: The solutions $\left\{y_{n}\right\}$ are orthogonal if $r(a)=0$ and/or $r(b)=0$ provided that the solutions are bounded at the corresponding boundary.
3. Example: Recall the parametric Bessel's equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda x^{2}-v^{2}\right) y=0
$$

Conversion to Sturm-Liouville equation in self-adjoint form yields $r(x)=x$, so $r(0)=0$. We considered the BVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\lambda x^{2} y=0 \quad \text { with } \quad y^{\prime}(0)=0 \quad \text { and } \quad y(1)=0
$$

General solution is

$$
y(x)=c_{1} J_{0}(\sqrt{\lambda} x)+c_{2} Y_{0}(\sqrt{\lambda} x)
$$

but this is a singular S-L problem because $r(0)=0$. Also, because $Y_{0}(0) \rightarrow-\infty, Y_{0}(\sqrt{\lambda} x)$ is not a viable solution. However, we can show that

$$
y_{m}(1) y_{n}^{\prime}(1)-y_{n}(1) y_{m}^{\prime}(1)=(0) y_{n}^{\prime}(1)-(0) y_{m}^{\prime}(1)=0
$$

because the second $\mathrm{BC} y(1)=0$ applies to all solutions. Thus, there are nontrivial, orthogonal solutions to this BVP.
4. Note that

$$
\begin{aligned}
A_{1} y_{m}(a)+B_{1} y_{m}^{\prime}(a)=0 & \rightarrow \quad A_{1} y_{m}(a)=-B_{1} y_{m}^{\prime}(a) \\
A_{1} y_{n}(a)+B_{1} y_{n}^{\prime}(a)=0 & \rightarrow \quad A_{1} y_{n}(a)=-B_{1} y_{n}^{\prime}(a)
\end{aligned}
$$

Dividing first equation by second (assuming that neither A_{1} nor B_{1} is zero) yields

$$
\frac{y_{m}(a)}{y_{n}(a)}=\frac{y_{m}^{\prime}(a)}{y_{n}^{\prime}(a)} \rightarrow \quad y_{m}(a) y_{n}^{\prime}(a)-y_{n}(a) y_{m}^{\prime}(a)=0 .
$$

Also satisfied if either $A_{1}=0$ or $B_{1}=0$. For example, if $A_{1} \neq 0$ and $B_{1}=0$, then $y_{m}(a)=0$ and $y_{n}(a)=0$, which still guarantees that $y_{m}(a) y_{n}^{\prime}(a)-y_{n}(a) y_{m}^{\prime}(a)=0$.

Similar result for other general BC at $x=b$.

