Lecture Outline for Wednesday, Sept. 20

1. $L U$ factorization

a. Express $N \times N$ matrix A as $A=L U$, where L is a lower triangular matrix and U is upper triangular:

$$
L=\left[\begin{array}{cccc}
l_{11} & 0 & \ldots & 0 \\
l_{21} & l_{22} & & \vdots \\
\vdots & \vdots & \ddots & 0 \\
l_{N 1} & l_{N, 2} & \cdots & l_{N N}
\end{array}\right] \text { and } \quad U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 N} \\
0 & u_{22} & \ldots & u_{2 N} \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & u_{N N}
\end{array}\right]
$$

b. One application is solution of $A \mathbf{x}=\mathbf{b}$:
$A \mathbf{x}=\mathbf{b} \rightarrow L U \mathbf{x}=\mathbf{b}$. Let $U \mathbf{x}=\mathbf{y} \rightarrow L \mathbf{y}=\mathbf{b}$. Solve $L \mathbf{y}=\mathbf{b}$ for \mathbf{y} and then $U \mathbf{x}=\mathbf{y}$ for \mathbf{x}.
Both solutions are straightforward using forward and backward substitution.
c. Example: Solve $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
3 & 1 & 2 \\
1 & -1 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
9 \\
16 \\
1
\end{array}\right] \quad L=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \quad U=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

d. LU factorizations are not typically unique. Results depend on method used.
e. Matlab command [L U] = lu(A)
f. \quad Determinants: $\operatorname{det}(A)=\operatorname{det}(L) \operatorname{det}(U)$
2. $Q R$ factorization
a. $L U$ factorization is for square systems; $Q R$ factorization is for over- and underdetermined systems ($M>N$ or $M<N$)
b. For overdetermined $(M>N)$ systems, express $M \times N$ matrix A in the product form $A=Q R$, where Q is an $M \times M$ orthogonal matrix and R is an $M \times N$ upper triangular matrix:

$$
Q=\left[\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
\mathbf{q}_{1} & \mathbf{q}_{2} & \cdots & \mathbf{q}_{M} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right] \text { and } \quad R=\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 N} \\
0 & r_{22} & \cdots & r_{2 N} \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & r_{N N} \\
0 & 0 & \cdots & 0 \\
0 & 0 & & \\
\vdots & & \ddots & \vdots \\
0 & & \cdots & 0
\end{array}\right] \text {, }
$$

(continued on next page)
where $\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots$ are orthogonal vectors that make up the columns of Q; i.e., $\mathbf{q}_{i}{ }^{T} \mathbf{q}_{j}=$ $\delta_{i j}$, where $\delta_{i j}=0$ if $i \neq j$ and $\delta_{i j}=1$ if $i=j$. The $M-N$ rows below the $N^{\text {th }}$ row of R are filled with zeroes.
c. Only the first N columns of Q are actually needed. (Why?)
d. To solve a system $A \mathbf{x}=\mathbf{b}$:
$A \mathbf{x}=\mathbf{b} \rightarrow Q R \mathbf{x}=\mathbf{b}$. Let $R \mathbf{x}=\mathbf{z} \rightarrow Q \mathbf{z}=\mathbf{b}$. Solve $Q \mathbf{z}=\mathbf{b}$ for \mathbf{z} and then $R \mathbf{x}=\mathbf{z}$ for \mathbf{x} using backward substitution. Matrix Q is orthogonal, so $Q^{-1}=Q^{T}$. Thus, $\mathbf{z}=Q^{T} \mathbf{b}$.
e. Matlab command $[Q R]=\operatorname{qr}(A)$
f. Example: Find linear fit to the following data set (seen before):

i	x_{i}	y_{i}
1	1.0	1.1
2	2.0	3.2
3	4.0	5.2

For a linear fit: $y=d_{0}+d_{1} x$, so the "function" matrix F and "data" vector \mathbf{y} are ($M=3$ and $N=2$)

$$
F=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{l}
1.1 \\
3.2 \\
5.2
\end{array}\right]
$$

The resulting Q and R matrices are (to four decimal places of accuracy)

$$
Q=\left[\begin{array}{ccc}
-0.5774 & 0.6172 & 0.5345 \\
-0.5774 & 0.1543 & -0.8018 \\
-0.5774 & -0.7715 & 0.2673
\end{array}\right] \quad R=\left[\begin{array}{cc}
-1.7321 & -4.0415 \\
0 & -2.1602 \\
0 & 0
\end{array}\right]
$$

Verify using Matlab that Q is orthogonal, then use the two-step solution $\mathbf{z}=Q^{T} \mathbf{b}$ and $R \mathbf{x}=\mathbf{z}$.

Solution should be $\mathbf{d}=\left[\begin{array}{l}0.1000 \\ 1.3143\end{array}\right]$
g. As with the $L U$ factorization, A has to be factored only once to solve $A \mathbf{x}=\mathbf{b}$ for any number of different vectors \mathbf{b}.
3. Many other kinds of factorizations are available for special situations, such as Cholesky and $L D L^{T}$ (both for symmetric matrices). The Cholesky and $L D L^{T}$ factorizations are both available in Matlab.
4. For more information on the various factorizations, see

- G. H. Golub and C. F. Van Loan, Matrix Computations (4 $4^{\text {th }}$ edition is latest)
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing ($3^{\text {rd }}$ edition is latest)

