Lecture Outline for Wednesday, Sept. 20

1. *LU* factorization

a. Express $N \times N$ matrix A as A = LU, where L is a lower triangular matrix and U is upper triangular:

$$L = \begin{bmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & & \vdots \\ \vdots & \vdots & \ddots & 0 \\ l_{N1} & l_{N,2} & \dots & l_{NN} \end{bmatrix} \text{ and } U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1N} \\ 0 & u_{22} & \dots & u_{2N} \\ \vdots & & \ddots & \vdots \\ 0 & \dots & 0 & u_{NN} \end{bmatrix}$$

- b. One application is solution of $A\mathbf{x} = \mathbf{b}$: $A\mathbf{x} = \mathbf{b} \rightarrow LU\mathbf{x} = \mathbf{b}$. Let $U\mathbf{x} = \mathbf{y} \rightarrow L\mathbf{y} = \mathbf{b}$. Solve $L\mathbf{y} = \mathbf{b}$ for \mathbf{y} and then $U\mathbf{x} = \mathbf{y}$ for \mathbf{x} . Both solutions are straightforward using forward and backward substitution.
- c. Example: Solve $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 9 \\ 16 \\ 1 \end{bmatrix} \quad L = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

- d. LU factorizations are not typically unique. Results depend on method used.
- e. Matlab command [L U] = lu(A)
- f. Determinants: det(A) = det(L) det(U)
- 2. *QR* factorization
 - a. LU factorization is for square systems; QR factorization is for over- and underdetermined systems (M > N or M < N)
 - b. For overdetermined (M > N) systems, express $M \times N$ matrix A in the product form A = QR, where Q is an $M \times M$ orthogonal matrix and R is an $M \times N$ upper triangular matrix:

$$Q = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_M \\ \downarrow & \downarrow & & \downarrow \end{bmatrix} \text{ and } R = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1N} \\ 0 & r_{22} & \cdots & r_{2N} \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & r_{NN} \\ 0 & 0 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & & \cdots & 0 \end{bmatrix},$$

(continued on next page)

where $\mathbf{q}_1, \mathbf{q}_2, \ldots$ are orthogonal vectors that make up the columns of Q; i.e., $\mathbf{q}_i^T \mathbf{q}_j = \delta_{ij}$, where $\delta_{ij} = 0$ if $i \neq j$ and $\delta_{ij} = 1$ if i = j. The M - N rows below the N^{th} row of R are filled with zeroes.

- c. Only the first N columns of Q are actually needed. (Why?)
- d. To solve a system $A\mathbf{x} = \mathbf{b}$: $A\mathbf{x} = \mathbf{b} \rightarrow QR\mathbf{x} = \mathbf{b}$. Let $R\mathbf{x} = \mathbf{z} \rightarrow Q\mathbf{z} = \mathbf{b}$. Solve $Q\mathbf{z} = \mathbf{b}$ for \mathbf{z} and then $R\mathbf{x} = \mathbf{z}$ for \mathbf{x} using backward substitution. Matrix Q is orthogonal, so $Q^{-1} = Q^T$. Thus, $\mathbf{z} = Q^T \mathbf{b}$.
- e. Matlab command [Q R] = qr(A)
- f. Example: Find linear fit to the following data set (seen before):

i	x_i	y_i
1	1.0	1.1
2	2.0	3.2
3	4.0	5.2

For a linear fit: $y = d_0 + d_1 x$, so the "function" matrix *F* and "data" vector **y** are (M = 3 and N = 2)

	1	1		1.1	
F =	1	2	y =	3.2	
	1	4		5.2	

The resulting Q and R matrices are (to four decimal places of accuracy)

	-0.5774	0.6172	0.5345		-1.7321	-4.0415
Q =	-0.5774	0.1543	-0.8018	R =	0	-2.1602
	_0.5774	-0.7715	0.2673		0	0

Verify using *Matlab* that Q is orthogonal, then use the two-step solution $\mathbf{z} = Q^T \mathbf{b}$ and $R\mathbf{x} = \mathbf{z}$.

Solution should be $\mathbf{d} = \begin{bmatrix} 0.1000\\ 1.3143 \end{bmatrix}$

- g. As with the *LU* factorization, *A* has to be factored only once to solve $A\mathbf{x} = \mathbf{b}$ for any number of different vectors \mathbf{b} .
- 3. Many other kinds of factorizations are available for special situations, such as Cholesky and LDL^{T} (both for symmetric matrices). The Cholesky and LDL^{T} factorizations are both available in *Matlab*.
- 4. For more information on the various factorizations, see
 - G. H. Golub and C. F. Van Loan, *Matrix Computations* (4th edition is latest)
 - W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes: The Art of Scientific Computing* (3rd edition is latest)