Lecture Outline for Friday, Sept. 22

1. Example application of QR factorization

Find linear fit to the following data set (seen before):

x_i	y_i
1.0	1.1
2.0	3.2
4.0	5.2
	x_i 1.0 2.0 4.0

Linear fit: $y = d_0 + d_1 x$, so the "function" matrix F and "data" vector y are (M = 3 and N = 2)

$$F = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 1.1 \\ 3.2 \\ 5.2 \end{bmatrix}.$$

Apply Matlab command [Q R] = qr(F).

The resulting *Q* and *R* matrices are (to four decimal places of accuracy)

	-0.5774	0.6172	0.5345		-1.7321	-4.0415
Q =	-0.5774	0.1543	-0.8018	R =	0	-2.1602
	0.5774	-0.7715	0.2673		0	0

Verify using *Matlab* that Q is orthogonal.

To solve overdetermined system: $F\mathbf{c} = \mathbf{y} \rightarrow QR\mathbf{c} = \mathbf{y}$. Let $R\mathbf{c} = \mathbf{z} \rightarrow Q\mathbf{z} = \mathbf{y}$. Solve $\mathbf{z} = Q^T \mathbf{y}$ and then $R\mathbf{c} = \mathbf{z}$ for \mathbf{c} using backward substitution.

Solution should be $\mathbf{c} = \begin{bmatrix} 0.1000\\ 1.3143 \end{bmatrix}$

- 2. Many other kinds of factorizations are available for special situations, such as Cholesky and LDL^{T} (both for symmetric matrices). The Cholesky and LDL^{T} factorizations are both available in *Matlab*.
- 3. For more information on the various factorizations, see
 - G. H. Golub and C. F. Van Loan, *Matrix Computations* (4th edition is latest)
 - W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes: The Art of Scientific Computing* (3rd edition is latest)

(continued on next page)

- 4. The greatest factorization of them all, singular value decomposition (SVD)
 - a. Very good at handling difficult systems in which the matrix is very close to singular (ill conditioned), which can happen with large data sets, measurement errors, and/or noisy data, to name just a few issues often encountered in real problems.
 - b. Recommended over the normal equation for solving difficult overdetermined systems. Main disadvantages are more memory storage (an extra matrix) and sometimes it's slower.
 - c. Can also be used for data compression (demo soon).
 - d. Using the so-called "economy-sized" or "thin" decomposition, an $M \times N$ matrix A can be expressed in the product form (assuming M > N or M = N for now)

$$A = U\Sigma V^{H},$$

where U is an $M \times N$ column-orthogonal matrix, Σ (sometimes labeled S) is an $N \times N$ diagonal matrix, V is an $N \times N$ orthogonal matrix, and H indicates complex conjugate transpose (V can be complex if A is complex):

$$U = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_N \\ \downarrow & \downarrow & & \downarrow \end{bmatrix}_{M \times N} \qquad \Sigma = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_N \end{bmatrix}_{N \times N} \qquad V = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_N \\ \downarrow & \downarrow & & \downarrow \end{bmatrix}_{N \times N}$$

where $\mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}$ (orthogonal) and $\mathbf{v}_i^T \mathbf{v}_j = \delta_{ij}$ (orthogonal)

- e. In the full SVD, U is $M \times M$ and Σ is $M \times N$, but parts of U and Σ are not necessary for non-square (M > N) systems, hence the "economy-sized" decomposition.
- f. Matlab command (full SVD unless option is added): [U S V] = svd (A)
- g. The diagonal elements of Σ are called *singular values*. They are always real and either positive or zero, even if A has complex entries. They can repeat. Thus,

$$\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge \ldots \ge \sigma_N.$$

Zero singular values, if any, occupy the highest index numbers (i.e., up to and including σ_N)