Lecture Outline for Friday, Aug. 25

1. Basic problems and computations in linear algebra: $A \mathbf{x}=\mathbf{b}$ [review]
a. A, \mathbf{x} given: geometric transformations (images, outputs from inputs)
b. A, \mathbf{b} given: system solution (inputs from outputs)
c. Size \& shape matter in defining the solution
2. Solution of $A \mathbf{x}=\mathbf{b}$ using the inverse. For an $N \times N$ (square) system, the following statements are equivalent for the purpose of determining the solvability of the problem.
a. $A \mathbf{x}=\mathbf{b}$ has a unique solution
b. A has a unique inverse $\left(A^{-1}\right)$
c. A is non-singular
d. A has full $\operatorname{rank}($ i.e., $\operatorname{rank}(A)=N)$
e. $\operatorname{det}(A)=|\mathrm{A}| \neq 0$
3. Route to finding solutions (implicit inverse computation)
a. Process: for augmented matrix and reduce (transform) a system to an easier-to-solve form
b. $A \mathbf{x}=\mathbf{b}$ becomes $U \mathbf{x}=\mathbf{d}$ and solution ensues (U is upper triangular)
c. Method: row reduction using elementary row operations (EROs); Gaussian elimination or Gauss-Jordan elimination
i. Multiply a row (j) by a value (c)
ii. Add a multiple (c) of one row (j) to another (k)
iii. Interchange rows j and k

Example Problems in Solving Systems of Linear Equations

Prob. 1:
$3 x_{1}-x_{2}+x_{3}=-1$
$9 x_{1}-2 x_{2}+x_{3}=-9$
$3 x_{1}+x_{2}-2 x_{3}=-9$

Prob. 2:
$3 x-y-2 z=0$
$-6 x+2 y+6 z=4$
$2 x+y+6 z=13$

