ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023

Lecture Outline for Friday, Aug. 25

- 1. Basic problems and computations in linear algebra: $A\mathbf{x} = \mathbf{b}$ [review]
 - a. A, x given: geometric transformations (images, outputs from inputs)
 - b. *A*, **b** given: system solution (inputs from outputs)
 - c. Size & shape matter in defining the solution
- 2. Solution of $A\mathbf{x} = \mathbf{b}$ using the inverse. For an $N \times N$ (square) system, the following statements are equivalent for the purpose of determining the solvability of the problem.
 - a. $A\mathbf{x} = \mathbf{b}$ has a unique solution
 - b. A has a unique inverse (A^{-1})
 - c. A is non-singular
 - d. A has full rank (i.e., rank(A) = N)
 - e. $\det(A) = |\mathbf{A}| \neq 0$
- 3. Route to finding solutions (implicit inverse computation)
 - a. Process: for augmented matrix and reduce (transform) a system to an easier-to-solve form
 - b. $A\mathbf{x} = \mathbf{b}$ becomes $U\mathbf{x} = \mathbf{d}$ and solution ensues (U is upper triangular)
 - c. Method: row reduction using elementary row operations (EROs); Gaussian elimination or Gauss-Jordan elimination
 - i. Multiply a row (*j*) by a value (*c*)
 - ii. Add a multiple (c) of one row (j) to another (k)
 - iii. Interchange rows j and k

Example Problems in Solving Systems of Linear Equations

Prob. 1:

 $3x_1 - x_2 + x_3 = -1$ $9x_1 - 2x_2 + x_3 = -9$ $3x_1 + x_2 - 2x_3 = -9$

Prob. 2:

3x - y - 2z = 0-6x + 2y + 6z = 42x + y + 6z = 13