ENGR 695Advanced Topics in Engineering MathematicsFall 2023

Lecture Outline for Wednesday, Oct. 25

1. Continue with heat equation example:

$$k \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
, with $u(0,t) = 0$, $u(L,t) = 0$, and $u(x,0) = f(x)$

a. Review: Application of SOV method results in two linked ODEs:

$$X'' + \lambda X = 0$$
 and $T' + \lambda kT = 0$

b. Boundary conditions become

$$u(0,t) = X(0)T(t) = 0 \rightarrow X(0) = 0$$

$$u(L,t) = X(L)T(t) = 0 \rightarrow X(L) = 0$$

c. The X(x) problem is an S-L problem, and the T(t) problem is an IVP with a first-order ODE: $\frac{V'' + 2V - 0}{V(t) - 0} \text{ and } X(L) = 0$

$$X'' + \lambda X = 0$$
 with $X(0) = 0$ and $X(L) = 0$
 $T' + \lambda kT = 0$

d. Since the *X* problem has closed boundaries and is an S-L problem (homogeneous BCs), the most convenient solution form is

$$X(x) = c_1 \cos\left(\sqrt{\lambda}x\right) + c_2 \sin\left(\sqrt{\lambda}x\right)$$

e. Apply BCs to obtain eigenfunctions and eigenvalues

$$X_n(x) = c_2 \sin\left(\frac{n\pi x}{L}\right)$$
 with $\lambda_n = \left(\frac{n\pi}{L}\right)^2$

f. Each eigensolution to the full problem (*x* and *t* domains) has the form:

$$u_n(x,t) = X(x)T(t) = A_n \sin\left(\frac{n\pi x}{L}\right)e^{-k\lambda_n t}$$

The unknown coefficient in the T(t) solution has been subsumed into the composite constant A_n .

(continued on next page)

g. Each eigensolution u_n is a solution, but a linear combination of eigensolutions is also a solution. Full solution to the PDE for the general case:

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{L}\right) e^{-kn^2 \pi^2 t/L^2}$$

How do we find the coefficients $\{A_n\}$? Next time!