Lecture Outline for Monday, Sept. 25

1. Singular value decomposition (SVD): Implications and properties
a. $\quad A=U \Sigma V^{T}=\sum_{j=1}^{N} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T}$, where $\mathbf{u}_{j} \mathbf{v}_{j}^{T}$ is an outer product, each of which is $M \times N$.
i. The outer products have rank $=1$. (See HW \#2 Prob. 7.)
ii. A is a weighted sum of rank- $1 M \times N$ matrices.
iii. The weights $\left(\sigma_{j}\right)$ grow progressively smaller.
iv. If any of the singular values are zero or too small to matter (lost in the noise, for example), then A can be represented by two compact sets of orthogonal vectors $\left\{\mathbf{u}_{i}\right\}_{i=1}$ to r and $\left\{\mathbf{v}_{i}\right\}_{i=1}$ to r, where $r<N$.
v. The summation terms for zero or nearly zero singular values can be ignored. (Example given in image processing demo later.)
b. Use complex conjugate transpose for complex matrix A.
c. U and V are both orthogonal $\left(U^{-1}=U^{T}\right.$ and $\left.V^{-1}=V^{T}\right)$; thus,

$$
A=U \Sigma V^{T} \rightarrow A V=U \Sigma \quad \rightarrow \quad A \mathbf{v}_{i}=\sigma_{i} \mathbf{u}_{i}
$$

d. $A=U \Sigma V^{T} \rightarrow A^{T}=V \Sigma^{T} U^{T} \quad \rightarrow \quad A^{T} U=V \Sigma \quad \rightarrow \quad A^{T} \mathbf{u}_{i}=\sigma_{i} \mathbf{v}_{i}$
e. $\quad A^{T} A=\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right)=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma \Sigma^{T} \Sigma V^{T}$

$$
\rightarrow\left(A^{T} A\right) V=V \Sigma^{T} \Sigma \quad \rightarrow \quad\left(A^{T} A\right) \mathbf{v}_{i}=\sigma_{i}^{2} \mathbf{v}_{i}
$$

σ_{i}^{2} are the eigenvalues of $A^{T} A$, and $\left\{\mathbf{v}_{i}\right\}_{i=1 \text { to } N \text { are the eigenvectors }}$
f. $\quad A A^{T}=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}=U \Sigma V^{T} V \Sigma^{T} U^{T}=U \Sigma \Sigma^{T} U^{T}$

$$
\rightarrow\left(A A^{T}\right) U=U \Sigma^{T} \Sigma \quad \rightarrow \quad\left(A A^{T}\right) \mathbf{u}_{i}=\sigma_{i}^{2} \mathbf{u}_{i}
$$

σ_{i}^{2} are also the eigenvalues of $A A^{T}$, and $\left\{\mathbf{u}_{i}\right\}_{i=1}$ to N are the eigenvectors
g. If A is symmetric, then $A^{T} A=A A^{T}=A^{2}$, so $\lambda_{i}^{2}=\sigma_{i}^{2} \rightarrow\left|\lambda_{i}\right|=\left|\sigma_{i}\right|$ (sign ambiguity)
2. Applications and examples
a. To solve a system $A \mathbf{x}=\mathbf{b}$ (for overdetermined and square systems; underdetermined requires interpretation):

$$
U \Sigma V^{T} \mathbf{x}=\mathbf{b} \quad \rightarrow \quad \Sigma V^{T} \mathbf{x}=U^{T} \mathbf{b} \quad \rightarrow \quad V^{T} \mathbf{x}=\Sigma^{-1} U^{T} \mathbf{b} \quad \rightarrow \quad \mathbf{x}=V \Sigma^{-1} U^{T} \mathbf{b}
$$

Since Σ is diagonal (in the "economy-sized" decomposition),
(continued on next page)

$$
\Sigma^{-1}=\left[\begin{array}{cccc}
1 / \sigma_{1} & 0 & \cdots & 0 \\
0 & 1 / \sigma_{2} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & 1 / \sigma_{N}
\end{array}\right]_{N \times N}
$$

b. Example \#1: Compare eigenvalues to singular values of symmetric matrix A (use Matlab eig and svd commands):

$$
A=\left[\begin{array}{lll}
3 & 2 & 4 \\
2 & 1 & 5 \\
4 & 5 & 7
\end{array}\right]
$$

i. Notice order of singular values
ii. Check orthogonality of columns of U and V
iii. Compare condition number (using Matlab command cond) to σ_{1} / σ_{3}
iv. What is the rank of this matrix?
v. What are the ranks of $\mathbf{u}_{1} \mathbf{v}_{1}^{T}, \mathbf{u}_{2} \mathbf{v}_{2}^{T}$, and $\mathbf{u}_{3} \mathbf{v}_{3}^{T}$?
c. Example \#2: Compare eigenvalues to singular values of the singular matrix A :

$$
A=\left[\begin{array}{ccc}
1 & 2 & -5 \\
2 & -3 & 4 \\
4 & 1 & -6
\end{array}\right]
$$

i. Notice order of singular values
ii. Check orthogonality of columns of U and V
iii. Compare condition number (using Matlab command cond) to σ_{1} / σ_{3}
iv. What is the rank of this matrix?
v. What are the ranks of $\mathbf{u}_{1} \mathbf{v}_{1}^{T}, \mathbf{u}_{2} \mathbf{v}_{2}^{T}$, and $\mathbf{u}_{3} \mathbf{v}_{3}^{T}$?
d. Example \#3: Image processing demonstration.

