Lecture Outline for Monday, Nov. 27

1. Finite difference solution of the heat equation with Neumann BCs

$$
c \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}
$$

a. Dirichlet BCs are straightforward:

$$
u(a, t)=u_{1, j}=u_{a} \quad \text { and } \quad u(b, t)=u_{N_{x}, j}=u_{b}, \quad \text { for } t \geq 0
$$

where u_{a} and u_{b} are usually constants but could be time varying; easily handled
b. Neumann BCs (often used to model insulation at boundaries):

$$
\left.\frac{\partial u}{\partial x}\right|_{x=a}=u_{x a} \quad \text { and }\left.\quad \frac{\partial u}{\partial x}\right|_{x=b}=u_{x b}, \quad \text { for } t \geq 0
$$

where $u_{x a}$ and $u_{x b}$ are usually constants but could be time varying
c. One approach (for BC at $x=a$):

$$
\left.\frac{\partial u}{\partial x}\right|_{x=a} \approx \frac{u(a+\Delta x, t)-u(a-\Delta x, t)}{2 \Delta x}=\frac{u_{2, j}-u_{0, j}}{2 \Delta x}=u_{x a}
$$

double-sized interval ($2 \Delta x$) does not add significant error; less error than forward or backward difference with interval Δx
d. Note that $u_{0, j}$ (located at $x=a-\Delta x$) is outside solution space. Express it in terms of quantities that exist:

$$
u_{0, j}=u_{2, j}-2 \Delta x u_{x a}
$$

e. Update equation that applies to interior points:
general case: $u_{i, j+1}=C_{1} u_{i+1, j}+C_{2} u_{i, j}+C_{3} u_{i-1, j}$

$$
\text { for } i=1: u_{1, j+1}=C_{1} u_{2, j}+C_{2} u_{1, j}+C_{3} u_{0, j}
$$

where $C_{1}=C_{3}=\frac{c \Delta t}{\Delta x^{2}} \quad$ and $\quad C_{2}=1-2 \frac{c \Delta t}{\Delta x^{2}}$
f. Substitute expression for $u_{0, j}$ into the general update equation evaluated at $i=1$:

$$
\begin{aligned}
& u_{0, j}= u_{2, j}-2 \Delta x u_{x a} \quad \text { and } \quad u_{1, j+1}=C_{1} u_{2, j}+C_{2} u_{1, j}+C_{3} u_{0, j} \\
& \rightarrow \quad u_{1, j+1}=C_{1} u_{2, j}+C_{2} u_{1, j}+C_{3}\left(u_{2, j}-2 \Delta x u_{x a}\right) \\
& \rightarrow u_{1, j+1}=C_{4} u_{2, j}+C_{2} u_{1, j}-C_{5} u_{x a} \\
& \text { where } \quad C_{4}=\frac{2 c \Delta t}{\Delta x^{2}} \quad \text { and } \quad C_{5}=2 \Delta x \frac{c \Delta t}{\Delta x^{2}}=\frac{2 c \Delta t}{\Delta x}
\end{aligned}
$$

a. Similar result for BC at $x=b$:

$$
\begin{gathered}
u_{N_{x}, j+1}=C_{1}\left(u_{N_{x}-1, j}+2 \Delta x u_{x b}\right)+C_{2} u_{N_{x}, j}+C_{3} u_{N_{x}-1, j} \\
\rightarrow u_{N_{x}, j+1}=C_{4} u_{N_{x}-1, j}+C_{2} u_{N_{x}, j}+C_{5} u_{x b}
\end{gathered}
$$

b. These two special update equations are applied only at the boundaries.
2. Alternate approach for handling Neumann BCs
a. Add "fictional" solution space points at $i=0$ and $i=N_{x}+1$
b. Increase size of solution vector u by two (i.e., to $N_{x}+2$); append solution values to beginning and end of vector. Could instead add two special variables to hold u at end points
c. Update equations applied to end points (after interior points have been updated):

$$
u_{0, j}=u_{2, j}-2 \Delta x u_{x a} \quad \text { and } \quad u_{N_{x}+1, j+1}=u_{N_{x}-1, j+1}+2 \Delta x u_{x b}
$$

3. Crank-Nicholson Method (an implicit method) applied to heat equation
a. Issues with explicit method just considered:
i. centered difference for x-derivative and forward difference for t-derivative
ii. mixed differencing reduces accuracy slightly for a given Δx
iii. stability criterion limits size of Δt
b. One alternative: center all derivatives at time $t+0.5 \Delta t$. FD approximations become

$$
\begin{gathered}
t \text {-derivative: } \frac{\partial(x, t+0.5 \Delta t)}{\partial t} \approx \frac{u(x, t+\Delta t)-u(x, t)}{\Delta t} \\
x \text {-derivative: } \frac{\partial^{2} u(x, t+0.5 \Delta t)}{\partial x^{2}} \approx \frac{u(x+\Delta x, t+0.5 \Delta t)-2 u(x, t+0.5 \Delta t)+u(x-\Delta x, t+0.5 \Delta t)}{\Delta x^{2}}
\end{gathered}
$$

c. Indexing doesn't allow half time-steps, so

$$
\begin{aligned}
& \frac{\partial^{2} u(x, t+0.5 \Delta t)}{\partial x^{2}} \approx \frac{1}{2}\left[\frac{\partial^{2} u(x, t+\Delta t)}{\partial x^{2}}+\frac{\partial^{2} u(x, t)}{\partial x^{2}}\right] \\
& \approx \frac{1}{2}[\\
& \frac{u(x+\Delta x, t+\Delta t)-2 u(x, t+\Delta t)+u(x-\Delta x, t+\Delta t)}{\Delta x^{2}} \\
&\left.+\frac{u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)}{\Delta x^{2}}\right]
\end{aligned}
$$

d. Approximation of x-derivative using index notation:

$$
\frac{\partial^{2} u(x, t+0.5 \Delta t)}{\partial x^{2}} \approx \frac{1}{2 \Delta x^{2}}\left(u_{i+1, j+1}-2 u_{i, j+1}+u_{i-1, j+1}+u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right)
$$

e. FD approximation of heat equation becomes

$$
\frac{c}{2 \Delta x^{2}}\left(u_{i+1, j+1}-2 u_{i, j+1}+u_{i-1, j+1}+u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right)=\frac{u_{i, j+1}-u_{i, j}}{\Delta t}
$$

f. Multiply both sides by $2 \Delta x^{2} / c$, then gather $j+1$ (new) terms on the left and j (old) terms on the right:

$$
u_{i+1, j+1}-\left(2+\frac{2 \Delta x^{2}}{c \Delta t}\right) u_{i, j+1}+u_{i-1, j+1}=-u_{i+1, j}+\left(2-\frac{2 \Delta x^{2}}{c \Delta t}\right) u_{i, j}-u_{i-1, j}
$$

Left-hand side has terms at three adjacent locations $(i+1, i$, and $i-1)$, which leads to a set of coupled equations, that is, a system of equations (matrix equation).

