ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023

Lecture Outline for Monday, Nov. 27

1. Finite difference solution of the heat equation with Neumann BCs

$$c\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$

a. Dirichlet BCs are straightforward:

$$u(a,t) = u_{1,j} = u_a$$
 and $u(b,t) = u_{N_x,j} = u_b$, for $t \ge 0$

where u_a and u_b are usually constants but could be time varying; easily handled b. Neumann BCs (often used to model insulation at boundaries):

$$\frac{\partial u}{\partial x}\Big|_{x=a} = u_{xa}$$
 and $\frac{\partial u}{\partial x}\Big|_{x=b} = u_{xb}$, for $t \ge 0$

where u_{xa} and u_{xb} are usually constants but could be time varying

c. One approach (for BC at x = a):

$$\frac{\partial u}{\partial x}\Big|_{x=a} \approx \frac{u(a+\Delta x,t)-u(a-\Delta x,t)}{2\Delta x} = \frac{u_{2,j}-u_{0,j}}{2\Delta x} = u_{xa};$$

double-sized interval $(2\Delta x)$ does not add significant error; less error than forward or backward difference with interval Δx

d. Note that $u_{0,j}$ (located at $x = a - \Delta x$) is outside solution space. Express it in terms of quantities that exist:

$$u_{0,j} = u_{2,j} - 2\Delta x \, u_{xa}$$

e. Update equation that applies to interior points:

general case:
$$u_{i,j+1} = C_1 u_{i+1,j} + C_2 u_{i,j} + C_3 u_{i-1,j}$$

for
$$i = 1$$
: $u_{1,j+1} = C_1 u_{2,j} + C_2 u_{1,j} + C_3 u_{0,j}$

where
$$C_1 = C_3 = \frac{c\Delta t}{\Delta x^2}$$
 and $C_2 = 1 - 2\frac{c\Delta t}{\Delta x^2}$

(continued on next page)

f. Substitute expression for $u_{0,i}$ into the general update equation evaluated at i = 1:

$$u_{0,j} = u_{2,j} - 2\Delta x \, u_{xa} \quad \text{and} \quad u_{1,j+1} = C_1 \, u_{2,j} + C_2 \, u_{1,j} + C_3 \, u_{0,j}$$

$$\rightarrow \quad u_{1,j+1} = C_1 \, u_{2,j} + C_2 \, u_{1,j} + C_3 \left(u_{2,j} - 2\Delta x \, u_{xa} \right)$$

$$\rightarrow \quad u_{1,j+1} = C_4 \, u_{2,j} + C_2 \, u_{1,j} - C_5 \, u_{xa} ,$$

where
$$C_4 = \frac{2c\Delta t}{\Delta x^2}$$
 and $C_5 = 2\Delta x \frac{c\Delta t}{\Delta x^2} = \frac{2c\Delta t}{\Delta x}$

a. Similar result for BC at x = b:

$$u_{N_x,j+1} = C_1 \left(u_{N_x-1,j} + 2\Delta x \, u_{xb} \right) + C_2 \, u_{N_x,j} + C_3 \, u_{N_x-1,j}$$

$$\rightarrow \quad u_{N_x,j+1} = C_4 \, u_{N_x-1,j} + C_2 \, u_{N_x,j} + C_5 \, u_{xb}$$

- b. These two special update equations are applied only at the boundaries.
- 2. Alternate approach for handling Neumann BCs
 - a. Add "fictional" solution space points at i = 0 and $i = N_x + 1$
 - b. Increase size of solution vector u by two (i.e., to $N_x + 2$); append solution values to beginning and end of vector. Could instead add two special variables to hold u at end points
 - c. Update equations applied to end points (after interior points have been updated):

 $u_{0,j} = u_{2,j} - 2\Delta x u_{xa}$ and $u_{N_x+1,j+1} = u_{N_x-1,j+1} + 2\Delta x u_{xb}$

- 3. Crank-Nicholson Method (an implicit method) applied to heat equation
 - a. Issues with explicit method just considered:
 - i. centered difference for x-derivative and forward difference for t-derivative
 - ii. mixed differencing reduces accuracy slightly for a given Δx
 - iii. stability criterion limits size of Δt
 - b. One alternative: center all derivatives at time $t + 0.5\Delta t$. FD approximations become

t-derivative:
$$\frac{\partial (x, t+0.5\Delta t)}{\partial t} \approx \frac{u(x, t+\Delta t) - u(x, t)}{\Delta t}$$

x-derivative:
$$\frac{\partial^2 u(x,t+0.5\Delta t)}{\partial x^2} \approx \frac{u(x+\Delta x,t+0.5\Delta t)-2u(x,t+0.5\Delta t)+u(x-\Delta x,t+0.5\Delta t)}{\Delta x^2}$$

(continued on next page)

c. Indexing doesn't allow half time-steps, so

$$\frac{\partial^2 u(x,t+0.5\Delta t)}{\partial x^2} \approx \frac{1}{2} \left[\frac{\partial^2 u(x,t+\Delta t)}{\partial x^2} + \frac{\partial^2 u(x,t)}{\partial x^2} \right]$$
$$\approx \frac{1}{2} \left[\frac{u(x+\Delta x,t+\Delta t) - 2u(x,t+\Delta t) + u(x-\Delta x,t+\Delta t)}{\Delta x^2} + \frac{u(x+\Delta x,t) - 2u(x,t) + u(x-\Delta x,t)}{\Delta x^2} \right]$$

d. Approximation of *x*-derivative using index notation:

$$\frac{\partial^2 u(x,t+0.5\Delta t)}{\partial x^2} \approx \frac{1}{2\Delta x^2} \left(u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1} + u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \right)$$

e. FD approximation of heat equation becomes

$$\frac{c}{2\Delta x^2} \left(u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1} + u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \right) = \frac{u_{i,j+1} - u_{i,j}}{\Delta t}$$

f. Multiply both sides by $2\Delta x^2/c$, then gather j + 1 (new) terms on the left and j (old) terms on the right:

$$u_{i+1,j+1} - \left(2 + \frac{2\Delta x^2}{c\Delta t}\right)u_{i,j+1} + u_{i-1,j+1} = -u_{i+1,j} + \left(2 - \frac{2\Delta x^2}{c\Delta t}\right)u_{i,j} - u_{i-1,j}$$

Left-hand side has terms at three adjacent locations (i + 1, i, and i - 1), which leads to a set of coupled equations, that is, a system of equations (matrix equation).