Lecture Outline for Friday, Oct. 27

1. Finish heat equation example:
a. PDE with BCs and IC

$$
k \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad \text { with } \quad u(0, t)=0, \quad u(L, t)=0, \quad \text { and } \quad u(x, 0)=f(x)
$$

b. Solution is

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-k n^{2} \pi^{2} t / L^{2}}
$$

c. Determination of coefficients in summation:

Apply IC: $\quad f(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{L}\right)$
Multiply by m th eigenfunction and weighting function $[p(x)=1$ in this case $]$ and integrate over interval of interest:

$$
\int_{0}^{L} f(x) \sin \left(\frac{m \pi x}{L}\right) d x=\sum_{n=1}^{\infty} A_{n} \int_{0}^{L} \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Because the $X(x)$ problem is an S-L problem, the eigenfunctions are orthogonal. Thus, the inner products for $m \neq n$ are zero, so

$$
\begin{aligned}
& \int_{0}^{L} f(x) \sin \left(\frac{m \pi x}{L}\right) d x=A_{m} \int_{0}^{L} \sin ^{2}\left(\frac{m \pi x}{L}\right) d x=A_{m} \int_{0}^{L}\left[\frac{1}{2}-\frac{1}{2} \cos \left(\frac{2 m \pi x}{L}\right)\right] d x=A_{m}\left(\frac{L}{2}\right) \\
& \quad \rightarrow \quad A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{aligned}
$$

2. Interpretation of solution
a. How do we break it down?
b. Does it satisfy BCs?
c. Does it make sense? Behavior as $t \rightarrow \infty$
d. What can we learn from it?
e. Matlab simulation
3. Not always possible to find a solution with this method; some PDE solutions are not separable. Which of the following PDEs can be solved via SOV, and which cannot?
a. $\quad x \frac{\partial u}{\partial x}=y \frac{\partial u}{\partial y}$
b. $\quad a^{2} \frac{\partial^{2} u}{\partial x^{2}}-g=\frac{\partial^{2} u}{\partial t^{2}}$, where g is a constant
c. $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}+u$
d. $a^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=\frac{\partial u}{\partial t}$
