Lecture Outline for Monday, Aug. 28

1. Route to finding solutions (implicit inverse computation)
a. Process: for augmented matrix, reduce (transform) a system to an easier-to-solve form
b. $A \mathbf{x}=\mathbf{b}$ becomes $U \mathbf{x}=\mathbf{d}$ and solution ensues (U is upper triangular)
c. Method: row reduction using elementary row operations (EROs); Gaussian elimination or Gauss-Jordan elimination
i. Multiply a row (j) by a value (c)
ii. Add a multiple (c) of one row (j) to another (k)
iii. Interchange rows j and k

Example Problems in Solving Systems of Linear Equations

Prob. 1:

$$
\begin{aligned}
& 3 x_{1}-x_{2}+x_{3}=-1 \\
& 9 x_{1}-2 x_{2}+x_{3}=-9 \\
& 3 x_{1}+x_{2}-2 x_{3}=-9
\end{aligned}
$$

Prob. 2:
$3 x-y-2 z=0$
$-6 x+2 y+6 z=4$
$2 x+y+6 z=13$

Prob. 3:
$x+2 y-5 z=2$
$2 x-3 y+4 z=4$
$4 x+y-6 z=8$
2. Going further..
a. Upper triangular (matrix entries below main diagonal are zero)
b. Row-echelon form (upper triangular with 1 s on main diagonal)
c. Reduced row-echelon form (rref in Matlab; EROs until identity matrix is obtained or can't go any further)
3. Singular systems: rank and consistency
a. Consistent: has at least one solution or infinitely many solutions (other numbers of solutions - e.g., 3 - are not possible). Example in 2-D: Solution space is a point or line
b. Inconsistent: No solutions: Example in 2-D: Parallel lines - no intersecting point
c. Rank: Max. no. of independent row vectors in a matrix - examples coming soon

