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1. Important theorems and concepts applicable to ODEs 
 

a. Linear Nth order differential equation (DE): 
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If g(x) = 0, then the DE is homogenous 

b. IVPs have unique solutions (not true for BVPs) 
c. Superposition principle; a linear combination of solutions to a homogeneous DE over 

an interval is also a solution over the same interval 
d. Corollaries: 1) A constant multiple of a solution is also a solution; 2) homogeneous 

DE always possess the trivial solution y = 0 
e. Linearly independent vs. linearly dependent solutions (analogy to vectors) 
f. An Nth order homogeneous linear DE has a fundamental set of N linear independent 

solutions. The general solution is 
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g. Nonhomogeneous DEs: general solution = complementary solution + particular 
solution (complementary solution is the full solution set of the corresponding 
homogenous DE) 

h. Superposition also applies to particular solutions: If yp1 is a solution of the DE with 
g1(x), yp2 is a solution with g2(x), etc., then yp1 + yp2 + … is a solution to 
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2. Solution of nonhomogeneous linear ODEs with constant coefficients (not emphasized in 

course) 
 

a. You can guess or… 
b. Method of undetermined coefficients (Sec. 3.4 of Zill, 6th ed.) – doesn’t work for all 

forcing functions 
c. Method of variation of parameters (Sec. 3.5 of Zill, 6th ed.) – more general & 

complicated 
d. Use the annihilator method (see web link) – annihilators do not always exist 
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3. Boundary value problems (BVPs) involving special DEs 
 

a. Primarily concerned with 2nd order DEs (most common in mathematical physics) 
b. Fourier equation and modified Fourier equation 
c. Cauchy-Euler equation 
d. Bessel equation 
e. Others (Legendre, Airy, …) 

 
4. Solutions to Fourier and modified Fourier equations: 

 
2 0y a y′′ + =         and        2 0y a y′′ − =  

 
a. For closed boundaries (i.e., problem defined over finite range of x), recommend 

 
( ) ( ) ( )1 2cos siny x c ax c ax= +         and        ( ) ( ) ( )1 2cosh sinhy x c ax c ax= +  

 
Roots r1 and r2 of characteristic equation imaginary for Fourier equation and real for 
modified Fourier equation 

 
b. For open boundaries (i.e., problem defined over infinite or semi-infinite range of x), 

recommend 
( ) 1 2
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5. Example #1: BVP involving Fourier equation: 

 
2 0y a y′′ + =     with    ( )0 0y = , ( )1 0y =  

 
a. Nontrivial solution is 

 
( ) ( )2 siny x c n xπ= ,    n = 1, 2, 3, … 

 
b. Infinitely many nontrivial solutions since infinitely many integers n will work. This is 

an eigenvalue problem. Constants an = nπ are eigenvalues, and elementary solutions 
sin(nπx) are eigenfunctions. 

c. The constant c2 is left unspecified in this problem. However, if there had been a 
forcing function [i.e., yʺ + a2y = g(x)], then c2 could be uniquely specified. 
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6. Example #2: Now consider an arbitrary value for a2 but same BCs: 
 

2.5 0y yπ′′ + =     with    ( )0 0y = , ( )1 0y =  
 

a. No nontrivial solutions because y(1) = 0 is not satisfied; y = 0 is still a solution. 
 

( ) ( )2 siny x c n xπ= ,    n = 1, 2, 3, … 
 
7. Example #3: BVP involving modified Fourier equation: 

 
2 0y a y′′ − =     with    ( )0 0y = , ( )1 0y =  

 
a. Attempt to apply 

 
( ) ( ) ( )1 2cosh sinhy x c ax c ax= +  

 
b. No nontrivial solutions because y(1) = 0 is not satisfied; y = 0 is still a solution. 
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