## Lecture Outline for Friday, Sept. 29

1. Important theorems and concepts applicable to ODEs
a. Linear $N^{\text {th }}$ order differential equation (DE):

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}(x)+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{0}(x) y=g(x)
$$

If $g(x)=0$, then the DE is homogenous
b. IVPs have unique solutions (not true for BVPs)
c. Superposition principle; a linear combination of solutions to a homogeneous DE over an interval is also a solution over the same interval
d. Corollaries: 1) A constant multiple of a solution is also a solution; 2) homogeneous DE always possess the trivial solution $y=0$
e. Linearly independent vs. linearly dependent solutions (analogy to vectors)
f. An $N^{\text {th }}$ order homogeneous linear DE has a fundamental set of $N$ linear independent solutions. The general solution is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

g. Nonhomogeneous DEs: general solution = complementary solution + particular solution (complementary solution is the full solution set of the corresponding homogenous DE)
h. Superposition also applies to particular solutions: If $y_{p 1}$ is a solution of the DE with $g_{1}(x), y_{p 2}$ is a solution with $g_{2}(x)$, etc., then $y_{p 1}+y_{p 2}+\ldots$ is a solution to

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}(x)+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{0}(x) y=g_{1}(x)+g_{2}(x)+\cdots
$$

2. Solution of nonhomogeneous linear ODEs with constant coefficients (not emphasized in course)
a. You can guess or..
b. Method of undetermined coefficients (Sec. 3.4 of Zill, $6^{\text {th }}$ ed.) - doesn't work for all forcing functions
c. Method of variation of parameters (Sec. 3.5 of Zill, $6^{\text {th }}$ ed.) - more general \& complicated
d. Use the annihilator method (see web link) - annihilators do not always exist
3. Boundary value problems (BVPs) involving special DEs
a. Primarily concerned with $2^{\text {nd }}$ order DEs (most common in mathematical physics)
b. Fourier equation and modified Fourier equation
c. Cauchy-Euler equation
d. Bessel equation
e. Others (Legendre, Airy, ...)
4. Solutions to Fourier and modified Fourier equations:

$$
y^{\prime \prime}+a^{2} y=0 \quad \text { and } \quad y^{\prime \prime}-a^{2} y=0
$$

a. For closed boundaries (i.e., problem defined over finite range of $x$ ), recommend

$$
y(x)=c_{1} \cos (a x)+c_{2} \sin (a x) \quad \text { and } \quad y(x)=c_{1} \cosh (a x)+c_{2} \sinh (a x)
$$

Roots $r_{1}$ and $r_{2}$ of characteristic equation imaginary for Fourier equation and real for modified Fourier equation
b. For open boundaries (i.e., problem defined over infinite or semi-infinite range of $x$ ), recommend

$$
y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

5. Example \#1: BVP involving Fourier equation:

$$
y^{\prime \prime}+a^{2} y=0 \quad \text { with } \quad y(0)=0, y(1)=0
$$

a. Nontrivial solution is

$$
y(x)=c_{2} \sin (n \pi x), \quad n=1,2,3, \ldots
$$

b. Infinitely many nontrivial solutions since infinitely many integers $n$ will work. This is an eigenvalue problem. Constants $a_{n}=n \pi$ are eigenvalues, and elementary solutions $\sin (n \pi x)$ are eigenfunctions.
c. The constant $c_{2}$ is left unspecified in this problem. However, if there had been a forcing function [i.e., $y^{\prime \prime}+a^{2} y=g(x)$ ], then $c_{2}$ could be uniquely specified.
6. Example \#2: Now consider an arbitrary value for $a^{2}$ but same BCs:

$$
y^{\prime \prime}+2.5 \pi y=0 \quad \text { with } \quad y(0)=0, y(1)=0
$$

a. No nontrivial solutions because $y(1)=0$ is not satisfied; $y=0$ is still a solution.

$$
y(x)=c_{2} \sin (n \pi x), \quad n=1,2,3, \ldots
$$

7. Example \#3: BVP involving modified Fourier equation:

$$
y^{\prime \prime}-a^{2} y=0 \quad \text { with } \quad y(0)=0, y(1)=0
$$

a. Attempt to apply

$$
y(x)=c_{1} \cosh (a x)+c_{2} \sinh (a x)
$$

b. No nontrivial solutions because $y(1)=0$ is not satisfied; $y=0$ is still a solution.

