Lecture Outline for Monday, Oct. 2

1. Boundary value problems (BVPs) involving special DEs
a. Primarily concerned with $2^{\text {nd }}$ order DEs (most common in mathematical physics)
b. Appear frequently in important partial differential equations (PDEs):
i. Fourier equation and modified Fourier equation
ii. Cauchy-Euler equation
iii. Bessel equation
c. Others (Legendre, Airy, ...) appear less frequently but have important special applications
2. Solutions to Fourier and modified Fourier equations:

$$
y^{\prime \prime}+a^{2} y=0 \quad \text { and } \quad y^{\prime \prime}-a^{2} y=0
$$

a. For closed boundaries (i.e., problem defined over finite range of x), recommend

$$
y(x)=c_{1} \cos (a x)+c_{2} \sin (a x) \quad \text { and } \quad y(x)=c_{1} \cosh (a x)+c_{2} \sinh (a x)
$$

Roots r_{1} and r_{2} of characteristic equation imaginary for Fourier equation and real for modified Fourier equation
b. For open boundaries (i.e., problem defined over infinite or semi-infinite range of x), recommend

$$
y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

3. Example \#1: BVP involving Fourier equation:

$$
y^{\prime \prime}+a^{2} y=0 \quad \text { with } \quad y(0)=0, y(1)=0
$$

a. Nontrivial solution is $y(x)=c_{2} \sin (n \pi x), \quad n=1,2,3, \ldots$
b. Infinitely many nontrivial solutions since infinitely many integers n will work. This is an eigenvalue problem. Constants $a_{n}=n \pi$ are eigenvalues, and elementary solutions $\sin (n \pi x)$ are eigenfunctions.
c. Compare to $A \mathbf{y}=\lambda \mathbf{y}$, where A is a linear operator ($2^{\text {nd }}$ order derivative in this case) .
d. The constant c_{2} is left unspecified in this problem. However, if there had been a forcing function [i.e., $y^{\prime \prime}+a^{2} y=g(x)$], then c_{2} could be uniquely specified.
(continued on next page)
4. Example \#2: Now consider an arbitrary value for a^{2} but same BCs:

$$
y^{\prime \prime}+2.5 \pi y=0 \quad \text { with } \quad y(0)=0, y(1)=0
$$

No nontrivial solutions because $y(1)=0$ is not satisfied; $y=0$ is still a solution.
5. Example \#3: BVP involving modified Fourier equation:

$$
y^{\prime \prime}-a^{2} y=0 \quad \text { with } \quad y(0)=0, y(1)=0
$$

a. Attempt to apply

$$
y(x)=c_{1} \cosh (a x)+c_{2} \sinh (a x)
$$

b. No nontrivial solutions because $y(1)=0$ is not satisfied; $y=0$ is still a solution.
6. Cauchy-Euler equation

$$
\begin{gathered}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \\
\text { special case: } x^{2} y^{\prime \prime}+x y^{\prime}-\alpha^{2} y=0 \\
\text { special special case: } x^{2} y^{\prime \prime}+x y^{\prime}-y=0
\end{gathered}
$$

7. "Peel-the-onion" method applied to Cauchy-Euler equation with $a=b=c=1$

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \quad \text { equiv. to } \quad \frac{d}{d x}\left[\frac{1}{x} \frac{d}{d x}(x y)\right]=0
$$

Successive integrations to arrive at solution. First integration w.r.t. x :

$$
\frac{1}{x} \frac{d}{d x}(x y)=c_{1} \rightarrow \frac{d}{d x}(x y)=c_{1} x
$$

Second integration w.r.t. x :

$$
x y=c_{1} \frac{x^{2}}{2}+c_{2} \quad \rightarrow \quad y=c_{1} \frac{x}{2}+c_{2} \frac{1}{x}
$$

8. Solution to $2^{\text {nd }}$ order Cauchy-Euler equation with $a=b=1$ (See Sec. 3.6 of Zill, $6^{\text {th }}$ ed.)

$$
x^{2} y^{\prime \prime}+x y^{\prime}-\alpha^{2} y=0 \quad \text { solutions are } \quad y=\left\{\begin{array}{cc}
c_{1}+c_{2} \ln x, & \alpha=0 \\
c_{1} x^{-\alpha}+c_{2} x^{\alpha}, & \alpha>0
\end{array}\right.
$$

