ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023

Lecture Outline for Monday, Oct. 30

1. Not always possible to find a solution with SOV method; some PDE solutions are not separable. Which of the following PDEs can be solved via SOV, and which cannot?

a.
$$x \frac{\partial u}{\partial x} = y \frac{\partial u}{\partial y}$$

b. $a^2 \frac{\partial^2 u}{\partial x^2} - g = \frac{\partial^2 u}{\partial t^2}$, where g is a constant
c. $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} + u$
d. $a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = \frac{\partial u}{\partial t}$

2. Wave equation example

$$v^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$$
 $0 \le x \le L$, $t \ge 0$

- a. Vibrations of string: $v = \sqrt{\frac{T}{\rho}}$, where T = tension in string, $\rho =$ mass per unit length
- b. Typical BCs and ICs (two ICs because time problem is second order)

$$u(0,t) = 0$$
, $u(L,t) = 0$, $u(x,0) = f(x)$, and $\frac{\partial u}{\partial t}\Big|_{t=0} = g(x)$

c. Apply SOV method to obtain

$$u(x,t) = \sum_{n=1}^{\infty} \left[A_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{n\pi vt}{L}\right) + B_n \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi vt}{L}\right) \right]$$

with $A_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$ and $B_n = \frac{2}{n\pi v} \int_0^L g(x) \sin\left(\frac{n\pi x}{L}\right) dx$

d. As with heat equation, BCs typically determine spatial eigenfunctions and ICs typically determine coefficients (use orthogonality of inner products)