Lecture Outline for Monday, Dec. 4

1. Review/help session scheduling (final exam is 11:45 am $-2: 45 \mathrm{pm}$ Wednesday, Dec. 13):
a. Review: Any time Monday, Dec. 11 or ending before $4: 30$ pm Tuesday, Dec. 12
b. Tentative help session schedule:

Monday, Dec. 11, 9:00-10:00 pm (Zoom)
Tuesday, Dec. 12, 1:00-2:00 pm (BRKI 368) - depends on review session timing Wednesday, Dec. 13, 10:00-11:00 am (BRKI 368)
2. Review sheet for final exam posted soon. Exam covers material since Midterm Exam.
3. Correction to answer given for HW \#8 Prob. 2 (Robin boundary condition in the CrankNicholson heat equation algorithm)
a. Robin boundary condition:

$$
\left.\frac{\partial u}{\partial x}\right|_{x=a}-h u(a, t) \approx \frac{u(a+\Delta x, j \Delta t)-u(a-\Delta x, j \Delta t)}{2 \Delta x}-h u(a, j \Delta t)=-h u_{m}
$$

FD approximation simplifies to

$$
u_{0, j}=u_{2, j}-2 \Delta x h u_{1, j}+2 \Delta x h u_{m}
$$

b. Regular update equation applied at location $i=1$

$$
u_{0, j+1}-\alpha u_{1, j+1}+u_{2, j+1}=-u_{0, j}+\beta u_{1, j}-u_{2, j}
$$

where

$$
\alpha=2\left(1+\frac{\Delta x^{2}}{c \Delta t}\right) \quad \text { and } \quad \beta=2\left(1-\frac{\Delta x^{2}}{c \Delta t}\right)
$$

c. After substitution to eliminate $u_{0, j}$ and $u_{0, j+1}$:

$$
\begin{gathered}
\left(u_{2, j+1}-2 \Delta x h u_{1, j+1}+2 \Delta x h u_{m}\right)-\alpha u_{1, j+1}+u_{2, j+1}=-\left(u_{2, j}-2 \Delta x h u_{1, j}+2 \Delta x h u_{m}\right)+\beta u_{1, j}-u_{2, j} \\
\rightarrow \quad-(\alpha+2 \Delta x h) u_{1, j+1}+2 u_{2, j+1}=(\beta+2 \Delta x h) u_{1, j}-2 u_{2, j}-4 \Delta x h u_{m}
\end{gathered}
$$

not

$$
-(\alpha+2 \Delta x h) u_{2, j+1}+2 u_{3, j+1}=(\beta+2 \Delta x h) u_{2, j}-2 u_{3, j}-4 \Delta x h u_{m}
$$

d. The special update equation for the Robin BC at $x=a$ involves terms at $i=1$ and $i=2$, and the special update equation at $x=b$ involves terms at $i=N_{x}-1$ and $i=N_{x}$. The total number of equations is therefore equal to N_{x}, which results in an $N_{x} \times N_{x}$ system of equations, compared to the $\left(N_{x}-2\right) \times\left(N_{x}-2\right)$ system for Dirichlet BCs. (The system for Neumann BCs is also $N_{x} \times N_{x}$ in size.)
e. Can express the system of equations for Robin BCs as

$$
A \mathbf{u}_{j+1}=B \mathbf{u}_{j}+\mathbf{c} \rightarrow \mathbf{u}_{j+1}=A^{-1} B \mathbf{u}_{j}+A^{-1} \mathbf{c} \rightarrow \mathbf{u}_{j+1}=D \mathbf{u}_{j}+\mathbf{d},
$$

where $D=A^{-1} B, \mathbf{d}=A^{-1} \mathbf{c}$,

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
-(\alpha+2 \Delta x h) & 2 & 0 & 0 & \cdots & 0 \\
1 & -\alpha & 1 & 0 & \cdots & 0 \\
0 & 1 & -\alpha & 1 & & \vdots \\
\vdots & & & \ddots & & 0 \\
0 & \cdots & 0 & 1 & -\alpha & 1 \\
0 & \cdots & 0 & 0 & 2 & -(\alpha+2 \Delta x h)
\end{array}\right], \quad \mathbf{u}_{j+1}=\left[\begin{array}{c}
u_{1, j+1} \\
u_{2, j+1} \\
u_{3, j+1} \\
\vdots \\
u_{N_{x}-1, j+1} \\
u_{N_{x}, j+1}
\end{array}\right], \quad \mathbf{u}_{j}=\left[\begin{array}{c}
u_{1, j} \\
u_{2, j} \\
u_{3, j} \\
\vdots \\
u_{N_{x}-1, j} \\
u_{N_{x}, j}
\end{array}\right], \\
B=\left[\begin{array}{cccccc}
\beta+2 \Delta x h & -2 & 0 & 0 & \cdots & 0 \\
-1 & \beta & -1 & 0 & \cdots & 0 \\
0 & -1 & \beta & -1 & & \vdots \\
\vdots & & & \ddots & & 0 \\
0 & \cdots & 0 & -1 & \beta & -1 \\
0 & \cdots & 0 & 0 & -2 & \beta+2 \Delta x h
\end{array}\right], \quad \text { and } \quad \mathbf{c}=\left[\begin{array}{c}
-4 \Delta x h u_{m} \\
0 \\
0 \\
\vdots \\
0 \\
-4 \Delta x h u_{m}
\end{array}\right] .
\end{gathered}
$$

f. Not required in Prob.2, but for reference: Derivation of special update equation at $x=b$ for Robin BC (note sign changes; see p. 714 in Sec. 13.2 of Zill, $6^{\text {th }}$ ed.):

$$
\left.\frac{\partial u}{\partial x}\right|_{x=b}+h u(b, t) \approx \frac{u(b+\Delta x, j \Delta t)-u(b-\Delta x, j \Delta t)}{2 \Delta x}+h u(b, j \Delta t)=h u_{m}
$$

FD approximation simplifies to

$$
\frac{u_{N_{x}+1, j}-u_{N_{x}-1, j}}{2 \Delta x}+h u_{N_{x}, j}=h u_{m} \rightarrow u_{N_{x}+1, j}=u_{N_{x}-1, j}-2 \Delta x h u_{N_{x}, j}+2 \Delta x h u_{m}
$$

At time $j+1$:

$$
u_{N_{x}+1, j+1}=u_{N_{x}-1, j+1}-2 \Delta x h u_{N_{x}, j+1}+2 \Delta x h u_{m}
$$

Regular update equation applied at location $i=N_{X}$

$$
u_{N_{x}-1, j+1}-\alpha u_{N_{x}, j+1}+u_{N_{x}+1, j+1}=-u_{N_{x}-1, j}+\beta u_{N_{x}, j}-u_{N_{x}+1, j}
$$

Substitution to eliminate terms at $i=N_{x}+1$:

$$
\begin{aligned}
& u_{N_{x}-1, j+1}-\alpha u_{N_{x}, j+1}+\left(u_{N_{x}-1, j+1}-\right.\left.2 \Delta x h u_{N_{x}, j+1}+2 \Delta x h u_{m}\right)= \\
&-u_{N_{x}-1, j}+\beta u_{N_{x}, j}-\left(u_{N_{x}-1, j}-2 \Delta x h u_{N_{x}, j}+2 \Delta x h u_{m}\right) \\
& \rightarrow 2 u_{N_{x}-1, j+1}-(\alpha+2 \Delta x h) u_{N_{x}, j+1}=-2 u_{N_{x}-1, j}+(\beta+2 \Delta x h) u_{N_{x}, j}-4 \Delta x h u_{m}
\end{aligned}
$$

