Lecture Outline for Monday, Sept. 4

1. Generality \#1: Overdetermined systems are usually (but not always) inconsistent.

Examples: $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3 \\ 1 & 1\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}3 \\ 7 \\ 2\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$
Although an overdetermined system might not have an exact solution, it could still have a "best" approximate solution.
2. Generality \#2: Underdetermined systems are usually (but not always) consistent:

Examples: $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 1 & 3 & 5\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}7 \\ 9\end{array}\right] \quad A=\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 4 & 8\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}7 \\ 3\end{array}\right]$
Underdetermined systems can have infinitely many solutions or no solution but never a unique solution because $\operatorname{rank}(A) \leq M<N$ always.
3. Application of overdetermined systems: Curve-fitting and the method of least squares
a. Start with an example. Consider the following small data set. How can we estimate the value of $y(3)$, that is, the value of y at $x=3$?

i	x_{i}	y_{i}
1	1.0	1.1
2	2.0	3.2
3	4.0	5.2

b. One possible approach: Set up a matrix expression that computes the coefficients of the quadratic expression for a curve that passes through the data points.

$$
y=c_{0}+c_{1} x+c_{2} x^{2}
$$

Is the matrix equation solvable? If so, is the solution acceptable?
c. Another possible approach: Set up a matrix expression that computes the coefficients of the linear expression for a line that passes through the data points.

$$
y=c_{0}+c_{1} x
$$

Is the matrix equation solvable? If so, is the solution acceptable?
4. Curve-fitting: the basic idea
a. Given a data set: $\left(x_{i}, y_{i}\right), i=1$ to $M \rightarrow$ data vectors \mathbf{x} and \mathbf{y}
b. Define model: a set of functions $\left\{f_{j}\left(x_{i}\right)\right\}_{j=1}$ to N and coefficients $\left\{c_{j}\right\}_{j=1}$ to N that yield the best approximations to $\left\{y_{i}\right\}_{i=1}$ to M :
$y(x) \approx \hat{y}(x)=\sum_{j=1}^{N} c_{j} f_{j}(x) \rightarrow \hat{\mathbf{y}}=F \mathbf{c}$, where $F_{i j}=f_{j}\left(x_{i}\right)$ and $\hat{\mathbf{y}}$ contains best fit
c. Functions $\left\{f_{j}(x)\right\}$ (often called basis functions) can be almost anything; popular choices are 1 and x (linear fit), polynomials (including quadratic and cubic), sin/cos, exponentials, and logarithms
d. Least squares approach:
i. Residual vector: $\mathbf{r}=\mathbf{y}-\hat{\mathbf{y}}$ ($r_{i}=$ distance from actual y_{i} to approximation \hat{y}_{i} for each data point $i ; \mathbf{r}$ has M rows)
ii. Minimize $|\mathbf{r}|^{2}=\mathbf{r}^{T} \mathbf{r}$ or make residual orthogonal to approximation $\left(\mathbf{r}^{T} \hat{\mathbf{y}}=0\right)$
iii. Either way, the normal equation results (LS solution)
5. Derivation of normal equation from $\mathbf{r}^{T} \hat{\mathbf{y}}=0$. Solution:

$$
F^{T} F \mathbf{c}=F^{T} \mathbf{y} \quad \rightarrow \quad \mathbf{c}=\left(F^{T} F\right)^{-1} F^{T} \mathbf{y}
$$

6. Practical considerations:
a. In Matlab, can write $c=F \backslash y$; automatically forms solution using normal equations (or its equivalent)
b. $F^{T} F$ is symmetric and nonsingular if there are no repeated data points
c. F is $M x N$, so $F^{T} F$ is $N \times N$
