Lecture Outline for Monday, Nov. 6

1. Wave equation (1-D) problems with open boundaries

$$
v^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}} \quad-\infty \leq x \leq \infty, \quad t \geq 0
$$

a. Special solution methods required
b. One approach: See notes on D'Alembert's solution
c. Solution has $x \pm v t$ in arguments of functions (traveling waves)
d. Significance of parameter v
2. Wave equation in polar (cylindrical) coordinate system. Example: Vibrating circular membrane of radius c

$$
a^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right)=\frac{\partial^{2} u}{\partial t^{2}} \quad \text { for } \quad 0 \leq r \leq c \quad \text { and } \quad t \geq 0
$$

a. ODEs after separation

$$
r^{2} R^{\prime \prime}+r R^{\prime}+\lambda r^{2} R=0 \quad \text { and } \quad T^{\prime \prime}+\lambda a^{2} T=0
$$

b. Boundary conditions and initial conditions and their interpretation

$$
u(c, t)=0, \quad u(r, 0)=f(r), \quad \text { and }\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=g(r) ; \quad u \text { is finite everywhere }
$$

c. Suggested solution forms for ODEs (with $\lambda_{n}=\alpha_{n}{ }^{2}$)

$$
R_{n}(r)=c_{1} J_{0}\left(\alpha_{n} r\right)+c_{2} Y_{0}\left(\alpha_{n} r\right) \quad \text { and } \quad T_{n}(t)=c_{3} \cos \left(a \alpha_{n} t\right)+c_{4} \sin \left(a \alpha_{n} t\right)
$$

d. Eigenvalues and eigensolutions $\left(r_{n}=\right.$ roots of $\left.J_{0}\right)$

$$
u_{n}(r, t)=\left[A_{n} \cos \left(a \alpha_{n} t\right)+B_{n} \sin \left(a \alpha_{n} t\right)\right] J_{0}\left(\alpha_{n} r\right) \quad \text { with } \quad \sqrt{\lambda_{n}}=\alpha_{n}=\frac{r_{n}}{c}
$$

e. In the case of a drum being struck by a stick or mallet, $f(r)=0$ and $g(r)$ is a pulse centered at $r=0$.
f. Special additional condition: Solution must be finite within boundary (for $r \leq c$)
3. SOV solution and its interpretation

$$
u(r, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(a \alpha_{n} t\right)+B_{n} \sin \left(a \alpha_{n} t\right)\right] J_{0}\left(\alpha_{n} r\right)
$$

a. Inner product of Bessel functions; weighting function is $p(r)=r$

$$
\left\langle J_{0}\left(\alpha_{m} r\right), J_{0}\left(\alpha_{n} r\right)\right\rangle=\int_{0}^{c} r J_{0}\left(\alpha_{m} r\right) J_{0}\left(\alpha_{n} r\right) d r
$$

b. Apply ICs to find expressions for $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ coefficients

$$
\begin{aligned}
& u(r, 0)=f(r)=\sum_{n=1}^{\infty}\left[A_{n}(1)+B_{n}(0)\right] J_{0}\left(\alpha_{n} r\right)=\sum_{n=1}^{\infty} \\
& \rightarrow \int_{0}^{c} f(r) J_{0}\left(\alpha_{m} r\right) r d r=\sum_{n=1}^{\infty} A_{n} \int_{o}^{c} J_{0}\left(\alpha_{n} r\right) J_{0}\left(\alpha_{m} r\right) r d r \quad \rightarrow \quad A_{n}=\frac{\left\langle f(r), J_{0}\left(\alpha_{n} r\right)\right\rangle}{\left\|J_{0}\left(\alpha_{n} r\right)\right\|^{2}} \\
& \frac{\partial u}{\partial t}=\sum_{n=1}^{\infty}\left[-A_{n} a \alpha_{n} \sin \left(a \alpha_{n} t\right)+B_{n} a \alpha_{n} \cos \left(a \alpha_{n} t\right)\right] J_{0}\left(\alpha_{n} r\right) \\
& \rightarrow \quad B_{n}=\frac{\left\langle f(r), J_{0}\left(\alpha_{n} r\right)\right\rangle}{a \alpha_{n}\left\|J_{0}\left(\alpha_{n} r\right)\right\|^{2}}
\end{aligned}
$$

Note that $\left\|J_{0}\left(\alpha_{n} r\right)\right\|^{2}=\frac{c^{2}}{2} J_{1}^{2}\left(\alpha_{n} c\right)$
c. What does the result mean? How are the eigenvalues used and interpreted?
d. Matlab simulation
e. Are there standing waves? How do they compare to vibrating string case?

