Lecture Outline for Friday, Oct. 6

1. Fourier equation as an eigenvalue problem; three possible solution forms (for closed boundaries)

$$
y^{\prime \prime}+\lambda y=0
$$

a. If $\lambda<0: y(x)=c_{1} \cosh (\sqrt{-\lambda} x)+c_{2} \sinh (\sqrt{-\lambda} x)$
b. If $\lambda=0: y(x)=c_{1}+c_{2} x$
c. If $\lambda>0: y(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$
2. Other ODE classes with variable coefficients ($2^{\text {nd }}$ order only)
a. Parametric Bessel equation of order v (parameter is α)

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\alpha^{2} x^{2}-v^{2}\right) y=0
$$

b. Modified parametric Bessel equation of order v

$$
x^{2} y^{\prime \prime}+x y^{\prime}-\left(\alpha^{2} x^{2}+v^{2}\right) y=0
$$

c. Legendre equation of order n

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

d. Airy equation

$$
y^{\prime \prime} \pm a^{2} x y=0
$$

e. Chebyshev equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+a^{2} y=0
$$

(continued on next page)
3. Solutions to DEs with variable coefficients - the general approach:
a. Power series solution

$$
y(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{o}\right)^{n}
$$

but most of the ones we will see are expanded about $x_{o}=0$:

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

b. Ordinary points: Values of x at which variable coefficients are analytic
c. Singular points: Values of x that are not ordinary points
d. Singular points can regular or irregular
e. Example: $\ln (x)$ is not analytic for $x \leq 0$, so the ordinary points are $x>0$
f. Power series solutions valid only over intervals for which they converge; they are often not valid over all of $-\infty<x<\infty$
4. Example: Parametric Bessel equation of order v

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\alpha^{2} x^{2}-v^{2}\right) y=0
$$

a. The "parameter" is α
b. Series solution (just one of the two possible solutions) is the Bessel function of the first kind,

$$
J_{v}(\alpha x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+v+n)}\left(\frac{\alpha x}{2}\right)^{2 n+v}
$$

where $\Gamma(1+v)$ is the gamma function (more info in Appendix II of Zill, $6^{\text {th }}$ ed.)
c. Second series solution, which is LI from J_{v} if $v \neq$ integer:

$$
J_{-v}(\alpha x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1-v+n)}\left(\frac{\alpha x}{2}\right)^{2 n-v}
$$

d. Many practical applications with $v=$ integer. A more general second solution is the Bessel function of the second kind,

$$
Y_{v}(\alpha x)=\frac{\cos (v x) J_{v}(\alpha x)-J_{-v}(\alpha x)}{\sin (v x)}
$$

Seems to be indeterminate for certain values of x when $v=$ integer (get $0 / 0$).
However, it can be shown that Y_{v} exists and is LI from J_{v} even if v is an integer.
e. Thus, the general solution of the parametric Bessel equation can be written

$$
y(x)=c_{1} J_{v}(\alpha x)+c_{2} Y_{v}(\alpha x)
$$

f. The J_{v} and Y_{v} functions are well known and tabulated in old references (see web link: NIST Digital Library of Mathematical Functions), but most modern math software packages have Bessel functions built in (e.g., in Matlab, they are besselj and bessely).
g. See "Meet the Bessels" by Prof. Maneval for info on Bessel functions of zero order.

