ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023

Lecture Outline for Wednesday, Sept. 6

- 1. Method of least squares (application of normal equations)
 - a. Given a data set: $(x_i, y_i), i = 1$ to $M \rightarrow$ data vectors **x** and **y**
 - b. Define a set of weighted functions $\{f_j(x)\}_{j=1 \text{ to } N}$ that will hopefully fit the data:

 $y(x) \approx \hat{y}(x) = \sum_{j=1}^{N} c_j f_j(x)$ $\hat{y}(x)$ is the best fit curve

- c. Coefficients $\{c_j\}_{j=1 \text{ to } N}$ found via $F^T F \mathbf{c} = F^T \mathbf{y} \rightarrow \mathbf{c} = (F^T F)^{-1} F^T \mathbf{y}$
- d. In Matlab: $c = F \setminus y$ (recommended)
- e. Could also use: $c = (F'F) \setminus (F'Y)$ (academic interest only)
- 2. Back to the simple data set example: Applying the normal equation
 - a. Recall that we found quadratic and linear fits to the following small data set:

$$i \qquad x_i \qquad y_i \\ 1 \qquad 1.0 \qquad 1.1 \\ 2 \qquad 2.0 \qquad 3.2 \\ 3 \qquad 4.0 \qquad 5.2 \end{cases}$$
Quadratic fit: $y = c_0 + c_1 x + c_2 x^2$, where $\mathbf{c} = \begin{bmatrix} -1.7333 \\ 3.2000 \\ -0.3667 \end{bmatrix}$
Linear fit: $y = d_0 + d_1 x$, where $\mathbf{d} = \begin{bmatrix} 0.1000 \\ 1.3143 \end{bmatrix}$

- b. Find the quadratic coefficients $\{c_j\}_{j=1 \text{ to } 3}$ using the normal equation as described above (not $c = F \setminus y$).
 - i. Form matrix *F* and data vector **y**.
 - ii. Is the resulting coefficient vector **c** the same as before?
 - iii. What do you notice about the matrix $F^T F$?
 - iv. Compare to applying $c = F \setminus y$ in *Matlab*.
- c. Find the linear coefficients $\{d_j\}_{j=1 \text{ to } 2}$ using the normal equation.
 - i. Form matrix *F* and data vector **y**.
 - ii. Is the resulting coefficient vector **d** the same as before?
 - iii. What do you notice about the matrix $F^T F$?
 - iv. Compare to applying $d = F \setminus y$ in *Matlab*.
- **3.** Next: Constrained least squares optimization (not in the textbook; supplemental reading to come)