Lecture Outline for Wednesday, Nov. 8

1. Wave equation in polar (cylindrical) coordinate system. Example: Vibrating circular membrane of radius c (continued)

$$
\begin{gathered}
a^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right)=\frac{\partial^{2} u}{\partial t^{2}} \quad \text { for } \quad 0 \leq r \leq c \quad \text { and } \quad t \geq 0 \\
u(c, t)=0, \quad u(r, 0)=f(r), \quad \text { and }\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=g(r) ; \quad u \text { is finite everywhere }
\end{gathered}
$$

a. In the case of a drum being struck by a stick or mallet, $f(r)=0$ and $g(r)$ is a pulse centered at $r=0$.
b. SOV solution and its interpretation $\left(x_{n}=\right.$ roots of $\left.J_{0}\right)$

$$
u(r, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(a \alpha_{n} t\right)+B_{n} \sin \left(a \alpha_{n} t\right)\right] J_{0}\left(\alpha_{n} r\right) \quad \text { with } \quad \sqrt{\lambda_{n}}=\alpha_{n}=\frac{x_{n}}{c}
$$

c. Inner product of Bessel functions; weighting function is $p(r)=r$

$$
\left\langle J_{0}\left(\alpha_{m} r\right), J_{0}\left(\alpha_{n} r\right)\right\rangle=\int_{0}^{c} r J_{0}\left(\alpha_{m} r\right) J_{0}\left(\alpha_{n} r\right) d r
$$

d. Apply ICs to find expressions for $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ coefficients

$$
\begin{aligned}
& u(r, 0)=f(r)=\sum_{n=1}^{\infty}\left[A_{n}(1)+B_{n}(0)\right] J_{0}\left(\alpha_{n} r\right) \\
& \rightarrow \int_{0}^{c} r f(r) J_{0}\left(\alpha_{m} r\right) d r=\sum_{n=1}^{\infty} A_{n} \int_{o}^{c} r J_{0}\left(\alpha_{n} r\right) J_{0}\left(\alpha_{m} r\right) d r \quad \rightarrow \quad A_{n}=\frac{\left\langle f(r), J_{0}\left(\alpha_{n} r\right)\right\rangle}{\left\|J_{0}\left(\alpha_{n} r\right)\right\|^{2}} \\
& \frac{\partial u}{\partial t}=\sum_{n=1}^{\infty}\left[-A_{n} a \alpha_{n} \sin \left(a \alpha_{n} t\right)+B_{n} a \alpha_{n} \cos \left(a \alpha_{n} t\right)\right] J_{0}\left(\alpha_{n} r\right) \\
& \rightarrow \quad B_{n}=\frac{\left\langle g(r), J_{0}\left(\alpha_{n} r\right)\right\rangle}{a \alpha_{n}\left\|J_{0}\left(\alpha_{n} r\right)\right\|^{2}}
\end{aligned}
$$

e. What does the result mean? How are the eigenvalues used and interpreted?
i. Vibration frequencies: $\omega_{n}=2 \pi f_{n}=a \alpha_{n}=\frac{a x_{n}}{c} \quad \rightarrow \quad f_{n}=\frac{a x_{n}}{2 \pi c}$. where $x_{1}=2.4048, x_{2}=5.5201, x_{3}=8.6537, x_{4}=11.7915$, etc.
ii. Frequencies are proportional to x_{n}, but...
$x_{2}=2.29 x_{1}, x_{3}=3.59 x_{1}, x_{4}=4.89 x_{1}, \ldots$ (no harmonic relationships)
f. Matlab simulation
g. Are there standing waves? How do they compare to the vibrating string case?
2. Next: Numerical solution of PDEs using finite differences
a. First derivative approximations:
i. Forward: $\frac{d f\left(x_{o}\right)}{d x} \approx \frac{f\left(x_{o}+\Delta x\right)-f\left(x_{o}\right)}{\Delta x}$
ii. Backward: $\frac{d f\left(x_{o}\right)}{d x} \approx \frac{f\left(x_{o}\right)-f\left(x_{o}-\Delta x\right)}{\Delta x}$
iii. Centered: $\frac{d f\left(x_{o}\right)}{d x} \approx \frac{f\left(x_{o}+0.5 \Delta x\right)-f\left(x_{o}-0.5 \Delta x\right)}{\Delta x}$
iv. Error comparison (Δx larger on the right in graph):

b. Second derivative approximation: $\frac{d^{2} f\left(x_{o}\right)}{d t^{2}} \approx \frac{f\left(x_{o}+\Delta x\right)-2 f\left(x_{o}\right)+f\left(x_{o}-\Delta x\right)}{\Delta x^{2}}$
c. Example: For $f(x)=e^{x}$, approximate $f^{\prime}(1.2)$ using finite differences with $\Delta x=0.1$, 0.05 , and 0.01 .

