ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023

Lecture Outline for Friday, Sept. 8

- 1. Possible limitations of normal equation:
 - a. Sometimes produce large-magnitude and oscillatory weights if the basis functions overlap and are highly correlated (e.g., exponential functions)
 - b. Problem to be solve might require that all weights be positive
- 2. Constrained least squares optimization (not in textbook):
 - a. Same as unconstrained LS: Given a data set: (x_i, y_i) , i = 1 to $M \rightarrow$ data vectors **x** and **y**
 - b. Same as unconstrained LS: Define a set of weighted functions $\{f_j(x)\}_{j=1 \text{ to } N}$ that will hopefully fit the data:

$$y(x) \approx \hat{y}(x) = \sum_{j=1}^{N} c_j f_j(x)$$
 $\hat{y}(x)$ is the best fit curve

c. **Different:** Coefficients $\{c_j\}_{j=1 \text{ to } N}$ found via $(F^T F \mathbf{c} + \gamma I) = F^T \mathbf{y} \rightarrow \mathbf{c} = (F^T F + \gamma I)^{-1} F^T \mathbf{y},$

where γ is called a Lagrange multiplier

- d. In practice, start out with a very small value for γ and then increase it until the coefficients in **c** stop oscillating
- e. How it works: By adding a small value to the main diagonal of $F^T F$, its row vectors become less skew.
- f. 2-D analogy: \mathbf{u}_1 and \mathbf{u}_2 are basis vectors; small circle is solution they are trying to "reach" via the linear combination $c_1\mathbf{u}_1 + c_2\mathbf{u}_2$, where c_1 and c_2 are scalars. The coefficients c_1 and c_2 have to be large and have opposite algebraic signs if \mathbf{u}_1 and \mathbf{u}_2 are highly skewed (i.e., almost collinear).

