Homework on Series

1. Each of the series below telescopes. In each case, express the nth partial sum S_n in terms of n and determine whether the series converges or diverges.
 (a) $\sum_{k=0}^{\infty} \frac{1}{(k+1)(k+2)}$;
 (b) $\sum_{k=1}^{\infty} \ln(1 + \frac{1}{k})$.

2. Find $\sum_{k=0}^{\infty} (2a_k + 2^{-k})$ given that $\sum_{k=0}^{\infty} a_k = 3.57$.

3. Evaluate $\sum_{k=0}^{\infty} \left(\frac{1}{2^k} + \frac{1}{3^k} \right)^2$.

4. If $\sum_{k=0}^{\infty} a_k^2 = \sum_{k=0}^{\infty} b_k^2 = 4$ and $\sum_{k=0}^{\infty} a_k b_k = 3$ what is $\sum_{k=0}^{\infty} (a_k - b_k)^2$?

5. Do the following series converge or diverge?
 (a) $\sum_{k=1}^{\infty} \frac{k^2 + 1}{k+5}$;
 (b) $\sum_{k=1}^{\infty} (1 + 1/k)^k$.

6. From your text:
 §9.2: Problems 20, 25, 31
 §9.3: Problems 13, 29