Building polygons from spectral data

Emily B. Dryden

Bucknell University

MAA Special Session on Decoding Geometry
January 5, 2012

Joint work with Victor Guillemin and Rosa Sena-Dias
Outline

1. Motivation
2. The Problem
3. Some Solutions
4. Implications
Vibrating Drumheads

An example of the Laplacian on a domain D in the Euclidean plane.

Vibration frequencies \leftrightarrow Eigenvalues of Δ on D

How much geometry is encoded in the spectrum?
Abreu: Can one hear the shape of a Delzant polytope?
Abreu: Can one hear the shape of a Delzant polytope?

A convex polytope P in \mathbb{R}^n is *Delzant* if

- it is *simple*, i.e., there are n facets meeting at each vertex;
- it is *rational*, i.e., for every facet of P, a primitive outward normal can be chosen in \mathbb{Z}^n;
- it is *smooth*, i.e., for every vertex of P, the outward normals corresponding to the facets meeting at that vertex form a basis for \mathbb{Z}^n.
Examples and Non-examples

(0,1) (0,0) (1,0)

(0,1) (0,0) (2,0)

(0,0)
So What?

Symplectic geometers care about Delzant polytopes because...
Symplectic geometers care about Delzant polytopes because...

- M^{2n} is toric manifold, i.e., symplectic manifold with “compatible” \mathbb{T}^n-action
- g, toric Kähler metric on M
- Delzant/moment polytope associated to M
Symplectic geometers care about Delzant polytopes because...

- M^{2n} is toric manifold, i.e., symplectic manifold with “compatible” \mathbb{T}^n-action
- g, toric Kähler metric on M
- Delzant/moment polytope associated to M

Abreu’s question: Let M be a toric manifold equipped with a toric Kähler metric g. Does the spectrum of the Laplacian Δ_g determine the moment polytope of M?
Modifying Abreu’s Question: Step 1

A convex polytope P in \mathbb{R}^n is \textit{rational simple} if it is simple, it is rational, and for every vertex of P, the outward normals corresponding to the facets meeting at that vertex form a basis for \mathbb{Q}^n.
Modifying Abreu’s Question: Step 1

A convex polytope P in \mathbb{R}^n is \textit{rational simple} if it is simple, it is rational, and for every vertex of P, the outward normals corresponding to the facets meeting at that vertex form a basis for \mathbb{Q}^n.

![Diagram of a triangle with vertices at (0,0), (2,0), and (0,1)]
Modifying Abreu’s Question: Step 2

Equivariant spectrum = Laplace spectrum + weights for each eigenvalue
Motivation
The Problem
Some Solutions
Implications

Modifying Abreu’s Question: Step 2

Equivariant spectrum $=\text{ Laplace spectrum} + \text{ weights for each eigenvalue}$

Question

Let M be a toric orbifold equipped with a toric Kähler metric g. Does the equivariant spectrum of the Laplacian Δ_g determine the labeled moment polytope of M?
The equivariant spectrum associated to a toric orbifold M whose moment polytope has no parallel facets determines:

1. the (unsigned) normal directions to the facets;
2. the volumes of the corresponding facets;
3. the labels of the facets.
The equivariant spectrum associated to a toric orbifold M whose moment polytope has no parallel facets determines:

1. the (unsigned) normal directions to the facets;
2. the volumes of the corresponding facets;
3. the labels of the facets.

Given this data, how many labeled moment polytopes can you build?
Building Polygons
Minkowski’s Theorem

(Minkowski; Klain) Given a list
\{(u_i, \nu_i), u_i \in \mathbb{R}^n, \nu_i \in \mathbb{R}^+, \ i = 1, \ldots, d\} where the u_i are unit vectors that span \mathbb{R}^n, there exists a convex polytope P with facet normals u_1, \ldots, u_d and corresponding facet volumes \nu_1, \ldots, \nu_d if and only if

\[\sum_{i=1}^{d} \nu_i u_i = 0. \]

Moreover, this polytope is unique up to translation.
Troublemaker 1: subpolytopes

Lemma
Let P be a convex polytope in \mathbb{R}^n with no subpolytopes and facet volumes ν_1, \ldots, ν_d. Assume that the facet normals to P are u_1, \ldots, u_d up to sign. Then, up to translation, there are only 2 choices for the set of signed normals.
Lemma

Let P be a convex polytope in \mathbb{R}^n with no subpolytopes and facet volumes ν_1, \ldots, ν_d. Assume that the facet normals to P are u_1, \ldots, u_d up to sign. Then, up to translation, there are only 2 choices for the set of signed normals.
Troublemaker 2: parallel facets

Parallel facets introduce indeterminants:

- know *sum* of volumes of facets in parallel pair
- do not know which normal directions in list are repeated
Motivation

The Problem

Some Solutions

Implications

Bye-bye, troublemaking polytopes

Lemma

Close to any rational simple polytope in \mathbb{R}^n, there is a rational simple polytope that has no parallel facets and has no subpolytopes.
Bye-bye, troublemaking polytopes

Lemma

Close to any rational simple polytope in \mathbb{R}^n, there is a rational simple polytope that has no parallel facets and has no subpolytopes.

Orbifolds are better than manifolds!
Question

Let M be a toric orbifold equipped with a toric Kähler metric g. Does the equivariant spectrum of the Laplacian Δ_g determine the labeled moment polytope of M?
Question

Let M be a toric orbifold equipped with a toric Kähler metric g. Does the equivariant spectrum of the Laplacian Δ_g determine the labeled moment polytope of M?

Theorem

(D–V. Guillemin–R. Sena-Dias) Let M be a generic toric orbifold with a fixed torus action and a toric Kähler metric. Then the equivariant spectrum of M determines the labeled moment polytope P of M, up to two choices and up to translation.
Abreu’s original question

Question

Can one hear the shape of a Delzant polytope?
Abreu’s original question

Question

Can one hear the shape of a Delzant polytope?

Theorem (D–V. Guillemin–R. Sena-Dias)

Let M^4 be a toric symplectic manifold with a fixed torus action and a toric metric. Given the equivariant spectrum of M and the spectrum of the associated real manifold, we can reconstruct the moment polygon P of M up to two choices and up to translation for generic polygons with no more than 2 pairs of parallel sides.
Open questions and future directions

- Can the two possibilities be distinguished using spectral data?
- Are the genericity assumptions necessary?
Open questions and future directions

- Can the two possibilities be distinguished using spectral data?
- Are the genericity assumptions necessary?
- What can we say about the metric?
Open questions and future directions

- Can the two possibilities be distinguished using spectral data?
- Are the genericity assumptions necessary?
- What can we say about the metric?
- Can one hear the shape of a Delzant polytope?!