Eigenvalue (mis)behavior on manifolds

Emily B. Dryden
Bucknell University
Lehigh University
October 20, 2010
Outline

1. Isoperimetric inequalities
2. Upper bounds on eigenvalues for manifolds
3. Metrics invariant under a group action
4. Submanifolds
The Original Isoperimetric Inequality

The Problem of Queen Dido: maximize the size of Carthage
The Original Isoperimetric Inequality

- The Problem of Queen Dido: maximize the size of Carthage
- What about \textit{closed} curves?
The Original Isoperimetric Inequality

- The Problem of Queen Dido: maximize the size of Carthage
- What about closed curves?
 - planar
 - simple
 - fix length L, maximize area A
The Original Isoperimetric Inequality

- The Problem of Queen Dido: maximize the size of Carthage
- What about *closed* curves?
 - planar
 - simple
 - fix length L, maximize area A
 - “The” isoperimetric inequality:

\[L^2 \geq 4\pi A \]
Generalizations

- \mathbb{R}^n: minimize surface area among domains with fixed volume
Generalizations

- \mathbb{R}^n: minimize surface area among domains with fixed volume
- Mathematical physics: a physical quantity is extremal for a circular or spherical domain
An example

Setup:

- domain $D \subset \mathbb{R}^2$
- $f : D \rightarrow \mathbb{R}$, a smooth function which equals zero on the boundary of D
- $\Delta f := \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$
An example

Setup:
- domain $D \subset \mathbb{R}^2$
- $f : D \to \mathbb{R}$, a smooth function which equals zero on the boundary of D
- $\Delta f := \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$

Seek solutions to $\Delta f = \lambda f$

Especially interested in λ_1
The Rayleigh quotient for domains

Theorem

Let D be a domain with Δ acting on piecewise smooth, nonzero functions f which are zero on the boundary of D, and with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots$. For any such f,

$$\lambda_1 \leq \frac{\int_D |\nabla f|^2}{\int_D f^2},$$

with equality if and only if f is an eigenfunction of λ_1.
Minima of the Rayleigh quotient

Theorem (Rayleigh, Faber-Krahn)

Among all domains $D \subset \mathbb{R}^2$ with fixed area, the infimum of the Rayleigh quotient attains a minimum if and only if D is a circular disk.
Minima of the Rayleigh quotient

Theorem (Rayleigh, Faber-Krahn)

Among all domains $D \subset \mathbb{R}^2$ with fixed area, the infimum of the Rayleigh quotient attains a minimum if and only if D is a circular disk.

Higher-dimensional analog: Rayleigh quotient attains minimum iff $D \subset \mathbb{R}^n$ is sphere.
The Rayleigh quotient for manifolds

Setup:

- \((M, g)\), compact Riemannian manifold
- \(\Delta\), Laplace operator on \((M, g)\)
- Eigenvalues of \(\Delta\) are

\[0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \cdots\]
The Rayleigh quotient for manifolds

Setup:
- \((M, g)\), compact Riemannian manifold
- \(\Delta\), Laplace operator on \((M, g)\)
- Eigenvalues of \(\Delta\) are

\[
0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \cdots
\]

- Rayleigh quotient:

\[
\lambda_1(M) = \inf_{f \in \mathcal{F}_1} \frac{\int_M |\nabla f|^2}{\int_M f^2},
\]

where \(\mathcal{F}_1\) is set of smooth nonzero functions on \(M\) orthogonal to the constant functions
Hersch’s Theorem

Theorem (Hersch)

Consider the sphere S^2 equipped with any Riemannian metric g. We have

$$\lambda_1 \text{Vol}(g) \leq 8\pi,$$

with equality only in the case of the constant curvature metric.

Idea of proof: Move S^2 to its center of mass, and use coordinate functions as test functions in the Rayleigh quotient.
Compact orientable surfaces

Theorem (Yang-Yau)

Let \((M, g)\) be a compact orientable surface of genus \(\gamma\). Then

\[
\lambda_1(g) \text{Vol}(g) \leq 8\pi \left\lfloor \frac{\gamma + 3}{2} \right\rfloor.
\]
Compact orientable surfaces

Theorem (Yang-Yau)

Let \((M, g)\) be a compact orientable surface of genus \(\gamma\). Then

\[
\lambda_1(g) \, \text{Vol}(g) \leq 8\pi \left\lfloor \frac{\gamma + 3}{2} \right\rfloor.
\]

Generalized to nonorientable surfaces by Li-Yau
Theorem (Korevaar)

Let \((M, g)\) be a compact orientable surface of genus \(\gamma\), and let \(C > 0\) be a universal constant. For every integer \(k \geq 1\),

\[
\lambda_k(g) \Vol(g) \leq C(\gamma + 1)k.
\]
Theorem (Korevaar)

Let \((M,g)\) be a compact orientable surface of genus \(\gamma\), and let \(C > 0\) be a universal constant. For every integer \(k \geq 1\),

\[
\lambda_k(g) \text{Vol}(g) \leq C(\gamma + 1)k.
\]

Open questions abound, e.g., optimal bound for \(\lambda_2\) on Klein bottle or surface of genus 2.
Bleecker: For every $n \geq 3$, the sphere S^n admits metrics of volume one with λ_1 arbitrarily large.
Bleecker: For every $n \geq 3$, the sphere S^n admits metrics of volume one with λ_1 arbitrarily large.

Theorem (Colbois-Dodziuk)

Let (M^n, g) be a compact, closed, connected manifold of dimension at least three. Then

$$\sup \lambda_1(g) \frac{\text{Vol}(g)^{2/n}}{= \infty},$$

where the supremum is taken over all Riemannian metrics g on M.
Idea of proof

- Use Bleecker’s result: take \((S^n, g_0)\) such that \(\text{Vol}(S^n, g_0) = 1\) and \(\lambda_1(g_0) \geq k + 1\), where \(k\) is a large constant.
Idea of proof

- Use Bleecker’s result: take \((S^n, g_0)\) such that
 \(\text{Vol}(S^n, g_0) = 1\) and \(\lambda_1(g_0) \geq k + 1\), where \(k\) is a large constant

- Form connected sum of \(S^n\) and \(M\)
Idea of proof

- Use Bleecker’s result: take \((S^n, g_0)\) such that \(\text{Vol}(S^n, g_0) = 1\) and \(\lambda_1(g_0) \geq k + 1\), where \(k\) is a large constant.
- Form connected sum of \(S^n\) and \(M\).
- Connected sum is diffeomorphic to \(M\), contains submanifold \(\Omega\) naturally identified with \(S^n \setminus B_\rho\).
Idea of proof

- Use Bleecker’s result: take \((S^n, g_0)\) such that \(\text{Vol}(S^n, g_0) = 1\) and \(\lambda_1(g_0) \geq k + 1\), where \(k\) is a large constant.

- Form connected sum of \(S^n\) and \(M\).

- Connected sum is diffeomorphic to \(M\), contains submanifold \(\Omega\) naturally identified with \(S^n \setminus B_\rho\).

- Take arbitrary metric \(g_1\) on \(M\) whose restriction to \(\Omega\) equals \(g_0\) restricted to \(\Omega\), make \(g_1\) really small on most of \(M \setminus \Omega\) without changing it on \(\Omega\).
Idea of proof

- Use Bleecker’s result: take \((S^n, g_0)\) such that
 \(\text{Vol}(S^n, g_0) = 1\) and \(\lambda_1(g_0) \geq k + 1\), where \(k\) is a large constant.

- Form connected sum of \(S^n\) and \(M\).

- Connected sum is diffeomorphic to \(M\), contains submanifold \(\Omega\) naturally identified with \(S^n \setminus B_\rho\).

- Take arbitrary metric \(g_1\) on \(M\) whose restriction to \(\Omega\) equals \(g_0\) restricted to \(\Omega\), make \(g_1\) really small on most of \(M \setminus \Omega\) without changing it on \(\Omega\).

- \(M\) “looks like” \((S^n, g_0)\), and \(\lambda_1\) for modified \(g_1\) is like \(\lambda_1(g_0)\).
Where do we go from here?

To study extremal properties of the Laplace spectrum in dimensions greater than two, we must add more constraints!
Where do we go from here?

To study extremal properties of the Laplace spectrum in dimensions greater than two, we must add more constraints!

- **intrinsic constraints**: restrict to conformal class of metrics, to projective Kähler metrics, to metrics which preserve the symplectic or Kähler structure, etc.

- **extrinsic constraints**: mean curvature (Reilly’s inequality)
Tweak Hersch’s assumptions:

- consider the subset of S^1-invariant metrics
- let Δ act on S^1-invariant functions
- resulting eigenvalues denoted λ^S_k
Tweak Hersch’s assumptions:
- consider the subset of S^1-invariant metrics
- let Δ act on S^1-invariant functions
- resulting eigenvalues denoted $\lambda_k^{S^1}$

Abreu-Freitas: $\lambda_1^{S^1}(g)\text{Vol}(g)$ is unbounded in general
Tweak Hersch’s assumptions:
- consider the subset of \(S^1 \)-invariant metrics
- let \(\Delta \) act on \(S^1 \)-invariant functions
- resulting eigenvalues denoted \(\lambda^S_k \)

Abreu-Freitas: \(\lambda^S_1 (g) \text{Vol}(g) \) is unbounded in general but is bounded if we only consider metrics arising from embeddings of \(S^2 \) in \(\mathbb{R}^3 \)
Back to the 2-sphere

Tweak Hersch’s assumptions:
- consider the subset of S^1-invariant metrics
- let Δ act on S^1-invariant functions
- resulting eigenvalues denoted $\lambda_k^{S^1}$

Abreu-Freitas: $\lambda_1^{S^1}(g)\text{Vol}(g)$ is unbounded in general but **is** bounded if we only consider metrics arising from *embeddings* of S^2 in \mathbb{R}^3

Bound is attained by the union of two disks of equal area
What happens for higher-dimensional spheres?

- replace S^1 by $O(n)$
What happens for higher-dimensional spheres?

- replace S^1 by $O(n)$
- have “hypersurfaces of revolution” diffeomorphic to hyperspheres
What happens for higher-dimensional spheres?

- replace S^1 by $O(n)$
- have “hypersurfaces of revolution” diffeomorphic to hyperspheres
- let Δ act on $O(n)$-invariant functions
- consider $O(n)$-invariant metrics on S^n arising from *embeddings* of S^n in \mathbb{R}^{n+1}
What happens for higher-dimensional spheres?

- replace S^1 by $O(n)$
- have “hypersurfaces of revolution” diffeomorphic to hyperspheres
- let Δ act on $O(n)$-invariant functions
- consider $O(n)$-invariant metrics on S^n arising from embeddings of S^n in \mathbb{R}^{n+1}

Theorem (Colbois-D-El Soufi)

Let (S^n, g) be as above, with $\text{Vol}(g) = 1$. Then, for all $k \in \mathbb{Z}$,

$$\lambda_k^{O(n)}(g) < \lambda_k^{O(n)}(D^n) \text{Vol}(D^n)^{2/n},$$

where D^n is the Euclidean n-ball of volume $1/2$.

Emily B. Dryden

Eigenvalue (mis)behavior on manifolds
What about *any* manifold, not just spheres?

- replace S^n by ccc manifold M of dimension $n \geq 3$
- replace $O(n)$ by finite subgroup G of group of diffeomorphisms acting on M
- let Δ act on G-invariant functions
- consider G-invariant metrics on M
What about *any* manifold, not just spheres?

- Replace S^n by ccc manifold M of dimension $n \geq 3$
- Replace $O(n)$ by finite subgroup G of group of diffeomorphisms acting on M
- Let Δ act on G-invariant functions
- Consider G-invariant metrics on M

Then $\lambda_1^G(g)\text{Vol}(g)^{2/n}$ is unbounded!

Proof: apply Colbois-Dodziuk “equivariantly”
Dropping one hypothesis

- ccc manifold M of dimension $n \geq 3$
- discrete group G acting on M
- consider G-invariant metrics on M
Dropping one hypothesis

- ccc manifold M of dimension $n \geq 3$
- discrete group G acting on M
- consider G-invariant metrics on M

Question: Does $\lambda_1(g)\text{Vol}(g)^{2/n}$ become arbitrarily large?
Dropping one hypothesis

- ccc manifold M of dimension $n \geq 3$
- discrete group G acting on M
- consider G-invariant metrics on M

Question: Does $\lambda_1(g)\text{Vol}(g)^{2/n}$ become arbitrarily large?

(Partial) Answer: Work of Paul Cernea
An extrinsic constraint

Hypersurfaces: curve in plane, two-dimensional surface in \mathbb{R}^3

Submanifolds: equator in S^2, manifold in \mathbb{R}^k for k sufficiently large
An extrinsic constraint

Hypersurfaces: curve in plane, two-dimensional surface in \mathbb{R}^3

Submanifolds: equator in S^2, manifold in \mathbb{R}^k for k sufficiently large

Why *extrinsic*?
Theorem (Colbois-D-El Soufi)

Let M be a compact convex hypersurface in \mathbb{R}^{n+1}. Then

$$\lambda_1(M) \frac{\text{Vol}(M)^{2/n}}{n} \leq A(n) \lambda_1(S^n) \frac{\text{Vol}(S^n)^{2/n}}{n},$$

where $\lambda_1(S^n) = n$ and $A(n) = \frac{(n+2) \text{Vol}(S^n)}{2 \text{Vol}(S^{n-1})}$.

Why is there no mention of a metric?
Theorem (Colbois-D-El Soufi)

Let M be a compact convex hypersurface in \mathbb{R}^{n+1}. Then

$$\lambda_1(M) \text{Vol}(M)^{2/n} \leq A(n) \lambda_1(S^n) \text{Vol}(S^n)^{2/n},$$

where $\lambda_1(S^n) = n$ and $A(n) = \frac{(n+2) \text{Vol}(S^n)}{2 \text{Vol}(S^{n-1})}$.

Why is there no mention of a metric?

Proof uses barycentric methods and projection
Replacing “convex”

Hypersurface M: intersection index is maximum number of collinear points in M
Replacing “convex”

Hypersurface M: intersection index is maximum number of collinear points in M

Submanifold M^n in \mathbb{R}^{n+p}: intersection index of M is

$$i(M) = \sup_{\Pi} \# M \cap \Pi,$$

where Π runs over set of p-planes transverse to M in \mathbb{R}^{n+p}
Theorem (Colbois-D-El Soufi)

Let M^n be a compact immersed submanifold of a Euclidean space \mathbb{R}^{n+p}. Then

$$\lambda_1(M) \Vol(M)^{2/n} \leq A(n) \left(\frac{i(M)}{2} \right)^{1+\frac{2}{n}} \lambda_1(S^n) \Vol(S^n)^{2/n}.$$
Theorem (Colbois-D-El Soufi)

For every compact n-dimensional immersed submanifold M of \mathbb{R}^{n+p} and for every integer k,

$$\lambda_k(M) \text{Vol}(M)^{2/n} \leq c(n)i(M)^{2/n}k^{2/n},$$

where $c(n)$ is an explicit constant depending only on the dimension n.
What does it all mean?

Combining Colbois-Dodziuk with our results in the extrinsic context says...
Combining Colbois-Dodziuk with our results in the extrinsic context says...

Given a smooth manifold \tilde{M} of dimension $n \geq 3$, there exist Riemannian metrics g of volume 1 on \tilde{M} such that any immersion of \tilde{M} into a Euclidean space \mathbb{R}^{n+p} which preserves g must have a very large intersection index and volume which concentrates into a small Euclidean ball.
Summary

- One physical isoperimetric problem is to extremize λ_1 subject to certain constraints, the most basic of which is the volume of the manifold.
Summary

- One physical isoperimetric problem is to extremize λ_1 subject to certain constraints, the most basic of which is the volume of the manifold.
- The Rayleigh quotient and spheres often play key roles in the solutions to this isoperimetric problem.
Summary

- One physical isoperimetric problem is to extremize λ_1 subject to certain constraints, the most basic of which is the volume of the manifold.
- The Rayleigh quotient and spheres often play key roles in the solutions to this isoperimetric problem.
- For manifolds of dimension at least three, getting bounds on λ_1 requires adding more constraints, either intrinsic (like invariance of the metric and eigenfunctions under a group action) or extrinsic (like immersed submanifolds).
Summary

- One physical isoperimetric problem is to extremize λ_1 subject to certain constraints, the most basic of which is the volume of the manifold.
- The Rayleigh quotient and spheres often play key roles in the solutions to this isoperimetric problem.
- For manifolds of dimension at least three, getting bounds on λ_1 requires adding more constraints, either intrinsic (like invariance of the metric and eigenfunctions under a group action) or extrinsic (like immersed submanifolds).

Outlook
- Are there other natural constraints, either of an intrinsic or extrinsic nature, that give interesting results?
- When upper bounds exist, can we show that they are optimal?
References

