Extremal invariant eigenvalues of the Laplacian of invariant metrics

Emily Dryden
Bucknell University

Joint work with
Bruno Colbois and Ahmad El Soufi

8 January 2008
The Plan

1. Historical motivation
2. S^1-invariant eigenvalues on S^2
3. Lie groups acting on manifolds
4. Future directions
Setup

\(M\): compact connected Riemannian manifold of dimension \(n \geq 2\)

\(g\): Riemannian metric on \(M\), with associated Laplacian \(\Delta_g\) and its spectrum

\(Spec(g) = \{0 = \lambda_0(g) < \lambda_1(g) \leq \ldots \leq \lambda_k(g) \leq \ldots\}\)

Question Consider the \(k\)th eigenvalue, normalised as a functional

\[g \rightarrow \lambda_k(g)\text{Vol}(g)^{2/n}\]

on the space of Riemannian metrics on \(M\). Are there extremal metrics for this functional?
Sampling of Answers for Surfaces

\(S^2 \) [Hersch]:
\[
\lambda_1(g) \text{Vol}(g) \leq 8\pi = \lambda_1(g_{\text{can}}) \text{Vol}(g_{\text{can}})
\]

Orientable surface of genus \(\gamma \) [Yang-Yau]:
\[
\lambda_1(g) \text{Vol}(g) \leq 8\pi \left[\frac{\gamma + 3}{2} \right]
\]

Surface of genus \(\gamma \) [Korevaar]: There exists a universal constant \(C > 0 \) such that for all \(k > 0 \),
\[
\lambda_k(g) \leq Ck(\gamma + 1).
\]
Higher Dimensions

Theorem [Colbois-Dodziuk]: \(\dim(M) \geq 3 \)

\[
\sup_g \{ \lambda_1(g) \text{Vol}(g)^{2/n} \} = \infty
\]

To study extremal properties of spectrum, we need to add some restrictions...

- conformal class (Korevaar, El Soufi-Ilias)
- projective Kähler metrics (Bourguignon-Li-Yau)
- symplectic or Kähler metrics (L. Polterovich)
- invariance under isometries (Abreu-Freitas)
S^1 acts on S^2

Consider S^2 with metrics which are smooth, have total area 4π, and are S^1-invariant.

Denote the invariant eigenvalues by $\lambda_{k}^{\text{inv}}(g)$.

Theorem [Abreu-Freitas]: In this setting, $\lambda_1^{\text{inv}}(g)$ can be any number strictly between 0 and ∞.
Do more restrictions help get bounds?

Fixed Gauss curvature at poles: still have
0 < \(\lambda_1^{\text{inv}}(g) \) < \(\infty \)

Metrics embedded in \(\mathbb{R}^3 \):
\[
\lambda_k^{\text{inv}}(g) < \frac{1}{2} \xi_k^2
\]
and in particular
\[
\lambda_1^{\text{inv}}(g) < \frac{1}{2} \xi_1^2 \approx 2.89
\]

Can characterize the supremum geometrically
Questions, Questions, Questions

- What can we say about the functional $\lambda_k^{\text{inv}} (g) \text{Vol}(g)^{2/n}$ for a general compact differentiable G-manifold?
- Does being embedded guarantee a bound on $\lambda_k^{\text{inv}} (g) \text{Vol}(g)^{2/n}$?
- If we find critical metrics, to what do they correspond geometrically?
Restrictions: Invariance and Conformal Class

ASSUMPTIONS

• $\dim(M) \geq 3$

• G: Lie group of dimension ≥ 1 acting effectively on M by isometries

• $\dim(M/G) \geq 1$

THEOREM [Colbois-D-El Soufi]: Let (M, g_0) and G be as above. Then

$$\sup_g \{ \lambda_1^{inv}(g) \text{Vol}(g)^{2/n} \} = \infty,$$

where the metrics g are G-invariant and conformal to g_0.
Theorem [Korevaar]:

\[\lambda_k(g) \operatorname{Vol}(g)^{2/n} \leq C_n([g_0]) k^{2/n}, \]

for any \(g \) conformal to \(g_0 \); \(C \) depends only on \(n \) and the conformal class \([g_0]\) of \(g_0 \).

Corollary Let \((M, g_0)\) and \(G \) be as on preceding slide. For any positive integer \(N \), there exists a \(G \)-invariant metric \(g_N \) conformal to \(g_0 \) such that none of the first \(N \) eigenfunctions of \(g_N \) is \(G \)-invariant.

Remark The assumption on the dimension of \(G \) is necessary in theorem on preceding slide. We can remove the conformal requirement and recover the same result for \(G \) a discrete group.
Restrictions: Invariance and Embedded

Let g be an $O(n)$-invariant metric of volume 1 on S^n embedded as a hypersurface of revolution in \mathbb{R}^{n+1}.

Theorem [Colbois-D-El Soufi]: For all k,

$$\lambda_k^{\text{inv}}(g) < \lambda_k^{\text{inv}}(D^n) \text{Vol}(D^n)^{2/n}.$$

Furthermore, there exists a sequence g_i of $O(n)$-invariant metrics on S^n in \mathbb{R}^{n+1} with

$$\lambda_k^{\text{inv}}(g_i) \text{Vol}(g_i)^{2/n} \to \lambda_k^{\text{inv}}(D^n) \text{Vol}(D^n)^{2/n},$$

but $\lambda_k^{\text{inv}}(D^n) \text{Vol}(D^n)^{2/n}$ is not attained by any smooth metric on S^n.
Embedding is not enough!

Proposition [Colbois-D-El Soufi]: Within the class of smooth S^1-invariant metrics g on T^2 which correspond to an embedding of T^2 in \mathbb{R}^3,

$$\sup_g \{ \lambda_1^{\text{inv}}(g) \text{Vol}(g) \} = \infty.$$

Remark The argument also works for a general torus $T^{n+1} = S^1 \times S^n$.

Future Directions

• Can we construct G-invariant metrics, G discrete, such that $\lambda_1(g) \text{Vol}(g)^{2/n}$ gets arbitrarily large?

• What happens if we look at invariant p-forms, $p > 0$?

• For every $k \in \mathbb{N}$, there exists an integer $m(k, g) \geq k$ such that

$$\lambda_k^{\text{inv}}(g) = \lambda_{m(k, g)}(g).$$

What is the behavior of $m(k, g)$?