Upper bounds for invariant eigenvalues of the Laplacian

Emily Dryden
CAMGSD

10 February 2006
The Plan

1. Historical Motivation

2. Two Dimensions

3. Higher Dimensions:
 - S^n with an action of $O(n)$
 - Manifolds with an action of a Lie group
Setup

M: compact connected Riemannian manifold of dimension $n \geq 2$

Laplacian: $\Delta = -\text{div grad}$

$\text{Spec}(g) = \{0 = \lambda_0(g) < \lambda_1(g) \leq \ldots \leq \lambda_k(g) \leq \ldots \}$

Question Consider the kth eigenvalue, normalised as a functional

$$g \rightarrow \lambda_k(g) \text{Vol}(g)^{2/n}$$

on the space of Riemannian metrics. What are critical/extremal metrics for this functional?
Answers for Surfaces

S^2 [Hersch] :

$$\lambda_1(g) \text{Vol}(g) \leq 8\pi = \lambda_1(g_{\text{can}}) \text{Vol}(g_{\text{can}})$$

Orientable surface of genus γ [Yang-Yau]:

$$\lambda_1(g) \text{Vol}(g) \leq 8\pi \left[\frac{\gamma + 3}{2} \right]$$

Surface of genus γ [Korevaar]: There exists a universal constant $C > 0$ such that for all $k > 0$,

$$\lambda_k(g) \leq Ck(\gamma + 1).$$
Answers in Higher Dimensions

Theorem [Colbois-Dodziuk]:

\[
\sup_{g}\{\lambda_1(g) \text{Vol}(g)^{2/n}\} = \infty
\]

To get finite bounds, we need to add some restrictions...

- conformal class (Korevaar, El Soufi-Ilias)
- projective Kähler metrics (Bourguignon-Li-Yau)
- symplectic or Kähler metrics (L. Polterovich)
- invariance under isometries (Abreu-Freitas)
S^1 acts on S^2

Consider S^2 with metrics which are smooth, have total area 4π, and are S^1-invariant.

Denote the invariant eigenvalues by $\lambda_{k}^{\text{inv}}(g)$.

Theorem [Abreu-Freitas]: In this setting, $\lambda_{1}^{\text{inv}}(g)$ can be any number strictly between 0 and ∞.
Do more restrictions help get bounds?

Fixed Gauss curvature at poles: still have

\[0 < \lambda_1^{\text{inv}}(g) < \infty \]

Metrics embedded in \(\mathbb{R}^3 \):

\[\lambda_k^{\text{inv}}(g) < \frac{1}{2} \xi_k^2 \]

and in particular

\[\lambda_1^{\text{inv}}(g) < \frac{1}{2} \xi_1^2 \approx 2.89 \]

Can characterize the supremum geometrically
Questions

- How do the invariant eigenvalues of a manifold behave under general group actions?
- Is being embedded essential to bounding \(\lambda_k^{\text{inv}}(g)\text{Vol}(g) \)?
- If we find critical metrics, to what do they correspond geometrically?
Dimension 2

Nontrivial S^1-actions exist on

- sphere
- torus
- projective plane
- Klein bottle

Proposition [Colbois-D-El Soufi]: Within the class of smooth S^1-invariant metrics g on T^2 which correspond to an embedding of T^2 in \mathbb{R}^3,

$$\sup_g \{ \lambda_1^{\text{inv}}(g) \text{Vol}(g) \} = \infty.$$

Remark The argument also works for a general torus $T^{n+1} = S^1 \times S^n$.

Higher Dimensions

Consider $O(n)$-invariant metrics on S^n embedded in \mathbb{R}^{n+1}, of volume 1.

Theorem [Colbois-D-El Soufi]: For all k,

$$\lambda_{k}^{\text{inv}}(g) < \lambda_{k}^{\text{inv}}(D^n).$$

Furthermore, there exists a sequence of embeddings of S^n in \mathbb{R}^{n+1} with

$$\lambda_{k}^{\text{inv}}(g_i) \to \lambda_{k}^{\text{inv}}(D^n),$$

but $\lambda_{k}^{\text{inv}}(D^n)$ is not attained by any smooth metric on S^n.
Lie Groups

Assumptions

- \(\dim(M) \geq 3 \)
- \(G: \) Lie group of dimension \(\geq 1 \) acting on \(M \) by isometries
- \(\dim(M/G) = d \geq 1 \)

Theorem [Colbois-D-El Soufi]: Let \((M, g_0)\) and \(G\) be as above. Then

\[
\sup_{g} \left\{ \lambda_1^{\text{inv}}(g) \frac{\text{Vol}(g)^{2/n}}{\text{Vol}(g_0)^{2/n}} \right\} = \infty,
\]

where the metrics \(g \) are \(G \)-invariant and conformal to \(g_0 \).
Discrete Lie Groups

Theorem [Korevaar]: Let (M, g_0) be a compact Riemannian manifold and $G < \text{Isom}(M)$ a discrete group such that the quotient M/G is orientable. Then

$$\sup_{g} \{ \lambda_k^{\text{inv}}(g) \text{Vol}(g)^{2/n} \} \leq C_n(g_0)k^{2/n},$$

where g is a G-invariant metric conformal to g_0, and C depends only on n and g_0.
Removing the conformal requirement

Theorem [Colbois-D-El Soufi]: Let \((M, g_0)\) be a compact Riemannian manifold of dimension \(n \geq 3\), and \(G < \text{Isom}(M)\) a discrete group. Then

\[
\sup_{g} \{ \lambda_1^{\text{inv}}(g) \text{Vol}(g)^{2/n} \} = \infty.
\]
Idea of Proof
Future Directions

- Can we construct G-invariant metrics, G discrete, such that $\lambda_1(g)\text{Vol}(g)^{2/n}$ gets arbitrarily large?

- What happens if we look at invariant p-forms, $p > 0$?

- Can we say more about critical invariant metrics?