You are at: Elements
 Sensors  Thermistors
Return
to Table of Contents
Thermistors are temperature sensitive resistors. All resistors vary with temperature, but thermistors are constructed of semiconductor material with a resistivity that is especially sensitive to temperature. However, unlike most other resistive devices, the resistance of a thermistor decreases with increasing temperature. That's due to the properties of the semiconductor material that the thermistor is made from. For some, that may be counterintuitive, but it is correct. Here is a graph of resistance as a function of temperature for a typical thermistor. Notice how the resistance drops from 100 kW, to a very small value in a range around room temperature. Not only is the resistance change in the opposite direction from what you expect, but the magnitude of the percentage resistance change is substantial.
In this lesson you will examine some of the characteristics of thermistors and the circuits they are used in.








Using these values, we can get three equations in A, B and C.
(1/273) = A + B ln(16330) + C (ln(16330))^{3}
(1/298) = A + B ln(5000) + C (ln(5000))^{3}
(1/323) = A + B ln(1801) + C (ln(1801))^{3}
This set of simultaneous linear equations can be solved for A, B and C. Here are the values computed for A, B and C.
A = 0.001284
B = 2.364x 10^{4}
C = 9.304x 10^{8}
Using these values you can compute the reciprocal, and therefore the temperature, from a resistance measurement.
Using these values for A, B and C we obtain a plot of resistance vs. Kelvin temperature.
If you have a resistance value  and that is what you will measure electrically  you then need to solve for the temperature. Use the reciprocal of the equation above, and you will get:
T = 1/[A + B*ln(R) + C*(ln(R))^{3}] R in W, T in ^{o}K
However, if the thermistor is embedded in
a circuit  like a voltage divider, for example  then you will have to
measure electrical quantities  usually voltage  and work back from that
electrical measurement.
Thermistors are most commonly used in bridge circuits like the one below. Bridge circuits are discussed in more detail in the lesson on bridge circuits.
In this bridge circuit, three resistors are constant, R_{a}, R_{b}, and R_{c}, while the resistive sensor, R_{s}, varies depending upon some physical variable  like temperature, light level, etc. That's where the thermistor can be used.
The thermistor can be placed anywhere in the bridge with three constant
resistors, but different placements can produce different behavior in the
bridge. For example, different placements might cause the output
voltage to go in different directions as the temperature changes.