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What is algebraic combinatorics anyhow?

The biggest open problem in combinatorics:

Define combinatorics

Algebraic combinatorics:

The use of techniques from algebra, topology, and geometry in the
solution of combinatorial problems, or the use of combinatorial
methods to attack problems in these areas [Billera, Bjérner, Greene,
Simion, Stanley, 1999].
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What are symmetric functions?

Definition.
A symmetric polynomial is a polynomial that is invariant under any
permutation of its variables xq, Xo, . . . Xp.

Example.

> X2Xp + X2X3 + X5X1 + X2X3 + X5 X1 + XoXo
is @ symmetric polynomial in x1, X2, X3.

Definition.
A symmetric function is a formal power series that is invariant under
any permutation of its (infinite set of) variables x = (xq, Xz, .. .).

Examples.
> Dig x2x; is a symmetric function.

2y i i
> Z,<j X7 Xj 1s not symmetric.

Inequalities among symmetric polynomials Peter McNamara



Bases for the symmetric functions

Fact: The symmetric functions form a vector space.
What is a possible basis?

» Monomial symmetric functions: Start with a monomial:

7 4,4
X{ X5 X3
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Bases for the symmetric functions

Fact: The symmetric functions form a vector space.
What is a possible basis?

» Monomial symmetric functions: Start with a monomial:

7.4 4. .4.7 7.4.4
ﬂé@+ﬁ&%+ﬂ&&+&&&+“m
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Bases for the symmetric functions

Fact: The symmetric functions form a vector space.
What is a possible basis?

» Monomial symmetric functions: Start with a monomial:
X{X3x5 + XFx5 x5+ XFxgx§ + xIxgxd + -

Given a partition A = (A1,..., ), €.9. A = (7,4,4),

_ A A¢
my = Z X
2

10-nig
distinct
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Bases for the symmetric functions

Fact: The symmetric functions form a vector space.
What is a possible basis?

» Monomial symmetric functions: Start with a monomial:
X{X3x5 + XFx5 x5+ XFxgx§ + xIxgxd + -
Given a partition A = (A1,..., ), €.9. A = (7,4,4),

_ A A¢
my = Z X
2

10-nig
distinct

» Elementary symmetric functions, e,.
» Complete homogeneous symmetric functions, h,.
» Power sum symmetric functions, p.

Combinatorial interest: for degree n, dimension = #partitions of n.

Typical questions: Prove they are bases, convert between bases, ...
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Schur functions
Cauchy, 1815.
» Partition A = (A1, A2, ..., \o).

» Young diagram.
Example: A = (4,4,3,2).
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Schur functions

Cauchy, 1815.

» Partition A = (A1, A2, ..., \o).

» Young diagram. /\

Example: A = (4,4,3,2).
» Semistandard Young tableau (SSYT)
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Schur functions

Cauchy, 1815.

VAN

» Partition A = (A1, A2, ..., \o).

» Young diagram. 113/34
Example: A = (4,4,3,2). Al4lal4]9
. 5|66

» Semistandard Young tableau (SSYT) 719
The Schur function s, in the variables x = (x1, X2, ...) is then defined
b

y Z X#1smT #ZSInT .

SSYT T

Example.

1,24 2 2
S4432 = Xy X3 X4 X5 Xg X7X§ + - - -
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Schur functions

Example.
<
/\11\ 112] [1[1] [1][3] [2]2] [2]3] [1]2] [1]3]
2] 2] 3] 3] 3] 3] 3] 2]
Hence
So1(X1, X2, X3) = XZXo + X1 X2 + X2X3 + X1 X2 + X5X3 + XoX2
+2X1 Xo X3
= Moq(Xy, X2, X3) +2mMy11(Xq, X2, X3).
Facts:

» Schur functions are symmetric functions.
» They form an orthonormal basis: (sy,s,,) = ..

Question. Why do we really care about Schur functions?
But first...
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Schur functions

Cauchy, 1815
» Partition A = (A1, A2, ..., \o).

N

1/3/3|4
» Young diagram. /\ 4141419
Example: A\ = (4,4,3,2) 5|66

» Semistandard Young tableau (SSYT). 719
The Schur function s, in the variables x = (xq, X2, .. .) is then
defined by

s, = Z X1#1‘s in ijéZ’s inT )
SSYT T

Example.
Saazz = XIXEXIX5XEX7XE + - -+ .
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Skew Schur functions

H. Nagelsbach (1871); Craig Aitken (1929) <

» Partition A = (A1, A2, ..., \o). s

> 1 fits inside ). i 14

» Young diagram. /\ 41419

Example: \/p = (4,4,3,2)/(3,1) 5|66

» Semistandard Young tableau (SSYT). 719
The skew Schur function sy, in the variables x = (x1, xe, .. .) is then
defined by _ _

SA//L _ Z X1#1‘s in ijéZ’s inT )
SSYT T

Example.
S4432/31 = X2X5X§X7X2 + e
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Skew Schur functions

» Skew Schur functions are symmetric functions.

» Conjecture [Stanley, 1972]. Any other shapes give
non-symmetric functions.

» There are too many skew Schur functions to form a basis.
» Our interest: What are the relationships among them?

_ A
s)x/u - § C/H/SV
v

¢ : Littlewood—Richardson coefficients

(1%
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Skew Schur functions

» Skew Schur functions are symmetric functions.
< <

/\5 : /\é

» Conjecture [Stanley, 1972]. Any other shapes give
non-symmetric functions.

» There are too many skew Schur functions to form a basis.
» Our interest: What are the relationships among them?

A
s)x/u = § C/H/SV
v

¢ : Littlewood—Richardson coefficients

(1%
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s, and cﬁy are superstars!

1. Representation Theory of Sp:

(8" ® 8") 157= ED ¢S s0 Xox =) chx
A

We also have that s, = the Frobenius characteristic of x*.
2. Representations of GL(n, C):
sx(Xy, ..., Xxn) = the character of the irreducible rep. V*.

Vie v =Pec), V.

g

3. Algebraic Geometry: Schubert classes o) form a linear basis for
H*(Gryn). We have

A
Ouoy = E CLuyOA-
ACkx (n—k)

Thus ¢}, = number of points of Gry, in €, N, N Q.
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There’s more!

4. Linear Algebra: When do there exist Hermitian matrices A, B
and C = A+ B with eigenvalue sets u, v and A, respectively?
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There’s more!

4. Linear Algebra: When do there exist Hermitian matrices A, B
and C = A+ B with eigenvalue sets u, v and A, respectively?

When ¢, > 0. (Heckman, Klyachko, Knutson, Tao.)
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There’s more!

4. Linear Algebra: When do there exist Hermitian matrices A, B
and C = A+ B with eigenvalue sets u, v and A, respectively?

When ¢, > 0. (Heckman, Klyachko, Knutson, Tao.)

By 1, 2 or 3 we get:
c,, >0.

Consequence:
We say that s/, = >, cﬁysy is a Schur-positive function.

Want a combinatorial proof that cﬁl, > 0: “They must count something!”
[Littlewood—Richardson rule]
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Summary so far

v

Symmetric functions: invariant until any permutation of their
variables xq, xo, . . ..

v

Schur functions: (most?) important basis for the symmetric
functions.

v

Skew Schur functions are Schur-positive.

v

(Skew) Schur functions have a beautiful combinatorial definition
in terms of tableaux.
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Summary so far

v

Symmetric functions: invariant until any permutation of their
variables xq, xo, . . ..

v

Schur functions: (most?) important basis for the symmetric
functions.

v

Skew Schur functions are Schur-positive.

v

(Skew) Schur functions have a beautiful combinatorial definition
in terms of tableaux.

Our focus: What are the relationships among skew Schur functions?

Inequalities among symmetric polynomials Peter McNamara

12



The equality question

Sa: the skew Schur function for the skew shape A.

Wide Open Question. When is s = sg?
Determine necessary and sufficient conditions on shapes of A and B.
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The equality question

Sa: the skew Schur function for the skew shape A.

Wide Open Question. When is s = sg?
Determine necessary and sufficient conditions on shapes of A and B.

v

Lou Billera, Hugh Thomas, Steph van Willigenburg (2004)
John Stembridge (2004)

Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
McN., Steph van Willigenburg (2006)

Christian Gutschwager (2008)

v

v

v

v
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Necessary conditions for equality
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Necessary conditions for equality

General idea: the overlaps among rows must match up.
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Necessary conditions for equality

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
i+, i +k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap,(1),overlap,(2),...).

Example.

A=
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Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
i+, i +k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap,(1),overlap,(2),...).

Example.

A=

» overlap; (/) = length of the ith row. Thus rows;(A) = 44211.
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Necessary conditions for equality

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
i+, i +k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap,(1),overlap,(2),...).

Example.

A=

» overlap; (/) = length of the ith row. Thus rows;(A) = 44211.
» overlap,(1) = 2, overlap,(2) = 3, overlap,(3) = 1,
overlap,(4) =1, sorows,(A) = 3211.
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Necessary conditions for equality

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
i+, i +k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap,(1),overlap,(2),...).

Example.

A=

» overlap; (/) = length of the ith row. Thus rows;(A) = 44211.

» overlap,(1) = 2 overlap,(2) = 3, overlap,(3) = 1,
overlap,(4) =1, sorows,(A) = 3211.

> rowsg(A) = 11

Inequalities among symmetric polynomials Peter McNamara

14



Necessary conditions for equality

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
i+, i +k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap,(1),overlap,(2),...).

Example.

A=

» overlap; (/) = length of the ith row. Thus rows;(A) = 44211.

(
» overlap,(1) = 2 overlap,(2) = 3, overlap,(3) = 1,
overlap,(4) =1, sorows,(A) = 3211.

)=

» rowsg(A) = 11
> rowsy(A) =0 for k > 3.
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Necessary conditions for equality
Theorem [RSvW]. Let A and B be skew shapes. If s4 = sg, then

rowsy(A) = rowsg(B) for all k.

Example.

] |
”

(221,2) # (221,11)
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Necessary conditions for equality
Theorem [RSvW]. Let A and B be skew shapes. If s4 = sg, then

rowsy(A) = rowsg(B) for all k.

Example.

] |
”

(221,2) # (221,11)

Converse is not true:

%+
L |

(321,11) (321,11)
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Schur-positivity order

Our main interest: inequalities.

S/ = Z A

Whenis s,,, — S,/ Schur-positive?
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Schur-positivity order

Our main interest: inequalities.

Sy = 2 G
Whenis s,,, — S,/ Schur-positive?

Definition. Let A, B be skew shapes. We say that

A>sB if sp—sg is Schur-positive.

Original goal: characterize the Schur-positivity order >¢ in terms of
skew shapes.

Inequalities among symmetric polynomials Peter McNamara

16



Example of a Schur-positivity poset

If B <s Athen |A| = |B|.
Call the resulting
ordered set Pj,.
Then Py:

Peter McNamara

Inequalities among symmetric polynomials

17



More examples

Inequalities among symmetric polynomials

Peter McNamara
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Known properties: Sufficient conditions

Sufficient conditions for A > B:
» Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
» Andrei Okounkov (1997)

» Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon
(2003)

Anatol N. Kirillov (2004)

Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
Francgois Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)
McN., Steph van Willigenburg (2009, 2012)

v

v

v

v
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Necessary conditions for Schur-positivity
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Necessary conditions for Schur-positivity

Notation. Write A < p if X is less than or equal to 1 in dominance
order, i.e. M4 <pq+---p forall i

Examples. 331 < 421 21 <32 33 £ 411
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Necessary conditions for Schur-positivity
Notation. Write A < p if X is less than or equal to 1 in dominance
order, i.e. M4 <pq+---p forall i
Examples. 331 < 421 21 <32 33 £ 411

Theorem [McN. (2008)]. Let A and B be skew shapes. If s4 — sg is
Schur-positive, then

rows,(A) < rowsg(B) for all k.
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Necessary conditions for Schur-positivity

Notation. Write A < p if X is less than or equal to 1 in dominance
order, i.e. M A< g+ forall i
Examples. 331 < 421 21 <32 33 £ 411

Theorem [McN. (2008)]. Let A and B be skew shapes. If s4 — sg is
Schur-positive, then

rows,(A) < rowsg(B) for all k.

In fact, it suffices to assume that suppg(A) 2 suppg(B).
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Necessary conditions for Schur-positivity

Notation. Write A < p if X is less than or equal to 1 in dominance
order, i.e. M A< g+ forall i
Examples. 331 < 421 21 <32 33 £ 411

Theorem [McN. (2008)]. Let A and B be skew shapes. If s4 — sg is
Schur-positive, then

rows,(A) < rowsg(B) for all k.

In fact, it suffices to assume that suppg(A) 2 suppg(B).

Example. ‘ |
A — — B =
] L]
SA = S41 + Sz + 28311 + Sp21 + S2114
S = S41 + 2832+ S311 + S221

So s4 — sg is not Schur-positive but suppg(A) 2 suppg(B).
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Equivalent to row overlap conditions

Let rectsy o(A) denote the number of k x ¢ rectangular subdiagrams

contained inside A.

A=

rectss 1(A) = 2, rectsp o(A) = 3, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:
» rowsy(A) = rows(B) forall k;
» colsy(A) = cols,(B) forall ¢;
» rectsy ((A) = rectsy ((B) forall k, £.
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Equivalent to row overlap conditions

Let rectsy o(A) denote the number of k x ¢ rectangular subdiagrams
contained inside A.

A= rectss 1(A) = 2, rectsp o(A) = 3, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:
» rowsy(A) = rows(B) forall k;
» colsy(A) = cols,(B) forall ¢;
» rectsy ((A) = rectsy ((B) forall k, £.

Theorem [McN]. Let A and B be skew shapes. TFAE:
» rows,(A) < rowsy(B) for all k;
» colsy(A) < cols,(B) forall ¢;
» rectsy ¢(A) < rectsy ¢(B) for all k, £.
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Summary so far

’ sa — sp is Schur-pos. ‘ = ’supps(A) D supps(B) ‘ =

Inequalities among symmetric polynomials

Peter McNamara

rows (A) < rowsy(B) Vk
cols,(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, £
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Summary so far

’ Sp — Sp is Schur-pos. ‘ = ’SUDDS(A) 2 suppg(B) ‘

Converse is very false.
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rows (A) < rowsy(B) Vk
cols,(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, £
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Summary so far

’ Sp — Sp is Schur-pos. ‘ = ’SUDDS(A) 2 suppg(B) ‘

=
T

Converse is very false.

rows (A) < rowsy(B) Vk
cols,(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, £

[ ]

Example.

A:E B=

(211,1) (22,2)
Sp = S31 + S211 S = S22
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Summary so far

’ Sp — Sp is Schur-pos. ‘ = ’SUDDS(A) 2 suppg(B) ‘

Converse is very false.
Example.

[ ]

g

(211,1)

SA = 831 + S211

conditions?

Inequalities among symmetric polynomials

=
T

rows (A) < rowsy(B) Vk
cols,(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, £

B =

(22,2)
Sp = Sz2
New Goal: Find weaker algebraic conditions on A and B that

imply the overlap conditions.
What algebraic conditions are being encapsulated by the overlap

Peter McNamara




Insight from a more general setting

Example. 37;_;_, XX xg is not symmetric but it is quasisymmetric.
e.g.
coeff. of x®x3x§ = coeff. of XEx§x5p14-

Definition. A formal power series f in variables xi, xo, ... iS
quasisymmetric if for all

» sequences ap, ao,...,ax of exponents, and

> sequences i1 < b <--- <l and j; < jo < --- < ji of indices,

coeff. of xTx2...x% in f = coeff. of xT'x2...x% inf.
1 Tl Ik VAR ] Jk
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Insight from a more general setting

Example. 37;_;_, XX xg is not symmetric but it is quasisymmetric.
e.g.
coeff. of x®x3x§ = coeff. of XEx§x5p14-

Definition. A formal power series f in variables xi, xo, ... iS
quasisymmetric if for all

» sequences ap, ao,...,ax of exponents, and
> sequences i1 < b <--- <l and j; < jo < --- < ji of indices,
coeff. of xTx2...x% in f = coeff. of xT'x2...x% inf.
1 Tk Ik Tk Ik
Bases.
» Monomial quasisymmetric functions M,,:
Given a composition o = (o, . .., ak), €.9. « = (6,4,9),
_ oy Qg
M, = Z X
iy <<

» Gessel’'s fundamental quasisymmetric functions F,, e.g,
Fso = Mso + Ma12 + Moo + Mit12 + Mai1 + Mot 11+ Mia11 4+ Myq144.
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F-basis of quasisymmetric functions

» Skew shape A.

» Standard Young tableau
(SYT) T of shape A.

Inequalities among symmetric polynomials
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F-basis of quasisymmetric functions

» Skew shape A. <

» Standard Young tableau

(SYT) T of shape A.
» Descentset S(T) = {3,5, 8}. AN

3

| Ol

» Descent composition

2
116
419

comp(T) = 3231.
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F-basis of quasisymmetric functions
» Skew shape A. <

» Standard Young tableau
(SYT) T of shape A.

» Descentset S(T) = {3,5, 8}. AN 2|3

» Descent composition 1/6]7
comp(T) = 3231. 419

Then s4 expands in the basis of fundamental quasisymmetric

functions as
Sap = Z Feomp(T)-
SYT T

| Ol

Example.
S4432/31 = Fa231 + -+ .
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F-basis of quasisymmetric functions
» Skew shape A. <

» Standard Young tableau
(SYT) T of shape A.

» Descentset S(T) = {3,5, 8}. AN 2|3

» Descent composition 1/6]7
comp(T) = 3231. 419

Then s4 expands in the basis of fundamental quasisymmetric

functions as
Sap = Z Feomp(T)-
SYT T

| Ol

Example.

Saa32/31 = Fa231 + - .
Facts.
The F form a basis for the quasisymmetric functions.
So notions of F-positivity and F-support make sense.
Schur-positivity implies F-positivity (converse fails at n = 4).
supps(A) 2 supp,(B) implies suppx(A) 2 suppr(B)

Inequalities among symmetric polynomials Peter McNamara
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New results: filling the gap

Theorem. [McN. (2013)]

’ s — s is Schur-pos. ‘ = ’SUpps(A) 2 supps(B) ‘

Y 4 rowsy (A) < rowsg(B) Vk
| sa — s is F-positive| = ’supp,_-(A) D suppg(B) \ = | cols,(A) < cols,(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, ¢
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New results: filling the gap

Theorem. [McN. (2013)]

’ s — s is Schur-pos. ‘ = ’SUpps(A) 2 supps(B) ‘

4 4 rowsy (A) < rowsg(B) Vk
| sa — s is F-positive| = ’supp,_-(A) O suppg(B) \ <= |cols,(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, ¢

Conjectu re. The rightmost implication is iff.
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New results: filling the gap

Theorem. [McN. (2013)]

’ s — s is Schur-pos. ‘ = ’SUpps(A) 2 supps(B) ‘

4 4 rowsy (A) < rowsg(B) Vk
| sa — s is F-positive| = ’supp,_-(A) O suppg(B) \ <= |cols,(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, ¢

Conjectu re. The rightmost implication is iff.

Evidence. Conjecture is true for:
> n < 12 (others fail already at n = 4);

» F-multiplicity-free skew shapes (as determined by Christine
Bessenrodt and Steph van Willigenburg (2013));

» horizontal strips; ribbons whose rows all have length at least 2.
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n = 6 example

F-support containment Row overlap reverse dominance

Inequalities among symmetric polynomials ~~ Peter McNamara



n = 12 case has 12,042 edges.
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Summary

Theorem. [McN. (2013)]

’ s4 — Sg is Schur-pos. ‘ = ’supps(A) 2 suppg(B) ‘

4 4 rowsy(A) < rowsg(B) Vk
’ Sa—sgis F-positive‘ = ’suppF(A) D suppr(B) ‘ = | colsy(A) < cols,(B) V¢
rectsy ¢(A) < rects ¢(B) Vk, ¢

Conjecture. The rightmost implication is iff.

Inequalities among symmetric polynomials Peter McNamara



Summary

Theorem. [McN. (2013)]

’ s4 — Sg is Schur-pos. ‘ = ’supps(A) 2 suppg(B) ‘

4 4 rowsy(A) < rowsg(B) Vk
’ Sa—sgis F-positive‘ = ’suppF(A) D suppr(B) ‘ = | colsy(A) < cols,(B) V¢
rectsy ¢(A) < rects ¢(B) Vk, ¢

Conjecture. The rightmost implication is iff.

Thank you!
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