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What is algebraic combinatorics anyhow?

The biggest open problem in combinatorics:

Define combinatorics

Algebraic combinatorics:

The use of techniques from algebra, topology, and geometry in the
solution of combinatorial problems, or the use of combinatorial
methods to attack problems in these areas [Billera, Björner, Greene,
Simion, Stanley, 1999].
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Outline

I Symmetric polynomials/functions

I Skew Schur functions

I Relationships among skew Schur functions

I The quasisymmetric insight
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What are symmetric functions?

Definition.
A symmetric polynomial is a polynomial that is invariant under any
permutation of its variables x1, x2, . . . xn.

Example.

I x2
1 x2 + x2

1 x3 + x2
2 x1 + x2

2 x3 + x2
3 x1 + x2

3 x2
is a symmetric polynomial in x1, x2, x3.

Definition.
A symmetric function is a formal power series that is invariant under
any permutation of its (infinite set of) variables x = (x1, x2, . . .).

Examples.

I
∑

i 6=j x2
i xj is a symmetric function.

I
∑

i<j x2
i xj is not symmetric.
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Bases for the symmetric functions

Fact: The symmetric functions form a vector space.
What is a possible basis?

I Monomial symmetric functions: Start with a monomial:

x7
1 x4

2 x4
3

+ x4
1 x7

2 x4
3 + x4

1 x4
2 x7

3 + x7
1 x4

3 x4
4 + · · · .

Given a partition λ = (λ1, . . . , λ`), e.g. λ = (7,4,4),

mλ =
∑

i1,...,i`
distinct

xλ1
i1
. . . xλ`i`

.

I Elementary symmetric functions, eλ.
I Complete homogeneous symmetric functions, hλ.
I Power sum symmetric functions, pλ.

Combinatorial interest: for degree n, dimension = #partitions of n.

Typical questions: Prove they are bases, convert between bases, ...
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Schur functions

Cauchy, 1815.

I Partition λ = (λ1, λ2, . . . , λ`).

I Young diagram.
Example: λ = (4,4,3,2).

I Semistandard Young tableau (SSYT)

7

4

1 3 3 4

944

6 65

The Schur function sλ in the variables x = (x1, x2, . . .) is then defined
by

sλ =
∑

SSYT T

x#1’s in T
1 x#2’s in T

2 · · · .

Example.
s4432 = x1

1 x2
3 x4

4 x5x2
6 x7x2

9 + · · · .
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Schur functions

Example.

2

1 1

2

1 2

2

1 1

3

1 3

3

2 2

3

2 3

3

1 2

3

1 3

Hence

s21(x1, x2, x3) = x2
1 x2 + x1x2

2 + x2
1 x3 + x1x2

3 + x2
2 x3 + x2x2

3

+2x1x2x3

= m21(x1, x2, x3) + 2m111(x1, x2, x3).

Facts:
I Schur functions are symmetric functions.
I They form an orthonormal basis: 〈sλ, sµ〉 = δλµ.

Question. Why do we really care about Schur functions?

But first...
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Skew

Schur functions

Cauchy, 1815
I Partition λ = (λ1, λ2, . . . , λ`).

I µ fits inside λ.

I Young diagram.
Example: λ

/µ

= (4,4,3,2)

/(3,1)

I Semistandard Young tableau (SSYT). 9

3 3 4

9

1

5

7

4 44

6 6

The

skew

Schur function sλ

/µ

in the variables x = (x1, x2, . . .) is then
defined by

sλ

/µ

=
∑

SSYT T

x#1’s in T
1 x#2’s in T

2 · · · .

Example.
s4432

/31

= x1x2
3 x4

4 x5x2
6 x7x2

9 + · · · .
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Skew Schur functions

H. Nägelsbach (1871); Craig Aitken (1929)
I Partition λ = (λ1, λ2, . . . , λ`).
I µ fits inside λ.
I Young diagram.

Example: λ/µ = (4,4,3,2)/(3,1)

I Semistandard Young tableau (SSYT).

4

9

5

7

44

6 6

9

The skew Schur function sλ/µ in the variables x = (x1, x2, . . .) is then
defined by

sλ/µ =
∑

SSYT T

x#1’s in T
1 x#2’s in T

2 · · · .

Example.
s4432/31 =

x1x2
3

x3
4 x5x2

6 x7x2
9 + · · · .
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Skew Schur functions

I Skew Schur functions are symmetric functions.

I Conjecture [Stanley, 1972]. Any other shapes give
non-symmetric functions.

I There are too many skew Schur functions to form a basis.
I Our interest: What are the relationships among them?
I

sλ/µ =
∑
ν

cλµνsν

cλµν : Littlewood–Richardson coefficients
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sλ and cλµν are superstars!

1. Representation Theory of Sn:

(Sµ ⊗ Sν) ↑Sn =
⊕
λ

cλµνSλ, so χµ · χν =
∑
λ

cλµνχ
λ.

We also have that sλ = the Frobenius characteristic of χλ.
2. Representations of GL(n,C):

sλ(x1, . . . , xn) = the character of the irreducible rep. Vλ.

Vµ ⊗ V ν =
⊕

cλµνVλ.

3. Algebraic Geometry: Schubert classes σλ form a linear basis for
H∗(Grkn). We have

σµσν =
∑

λ⊆k×(n−k)

cλµνσλ.

Thus cλµν = number of points of Grkn in Ω̃µ ∩ Ω̃ν ∩ Ω̃λ∨ .
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There’s more!

4. Linear Algebra: When do there exist Hermitian matrices A, B
and C = A + B with eigenvalue sets µ, ν and λ, respectively?

When cλµν > 0. (Heckman, Klyachko, Knutson, Tao.)

By 1, 2 or 3 we get:
cλµν ≥ 0.

Consequence:
We say that sλ/µ =

∑
ν cλµνsν is a Schur-positive function.

Want a combinatorial proof that cλµν ≥ 0: “They must count something!”
[Littlewood–Richardson rule]
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Summary so far

I Symmetric functions: invariant until any permutation of their
variables x1, x2, . . ..

I Schur functions: (most?) important basis for the symmetric
functions.

I Skew Schur functions are Schur-positive.

I (Skew) Schur functions have a beautiful combinatorial definition
in terms of tableaux.

Our focus: What are the relationships among skew Schur functions?
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The equality question

sA: the skew Schur function for the skew shape A.

Wide Open Question. When is sA = sB?
Determine necessary and sufficient conditions on shapes of A and B.

= =

I Lou Billera, Hugh Thomas, Steph van Willigenburg (2004)
I John Stembridge (2004)
I Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
I McN., Steph van Willigenburg (2006)
I Christian Gutschwager (2008)
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Necessary conditions for equality

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlapk (i) be the number of columns occupied in common by rows
i , i + 1, . . . , i + k − 1.
Then rowsk (A) is the weakly decreasing rearrangement of
(overlapk (1),overlapk (2), . . .).

Example.

A =

I overlap1(i) = length of the i th row. Thus rows1(A) = 44211.
I overlap2(1) = 2, overlap2(2) = 3, overlap2(3) = 1,

overlap2(4) = 1, so rows2(A) = 3211.
I rows3(A) = 11.
I rowsk (A) = ∅ for k > 3.
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Necessary conditions for equality

Theorem [RSvW]. Let A and B be skew shapes. If sA = sB, then

rowsk (A) = rowsk (B) for all k .

Example.

6=

(221,2) 6= (221,11)

Converse is not true:

6=

(321,11) (321,11)
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Schur-positivity order

Our main interest: inequalities.

sλ/µ =
∑
ν

cλµνsν .

When is sλ/µ − sσ/τ Schur-positive?

Definition. Let A, B be skew shapes. We say that

A ≥s B if sA − sB is Schur-positive.

Original goal: characterize the Schur-positivity order ≥s in terms of
skew shapes.
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Example of a Schur-positivity poset

If B ≤s A then |A| = |B|.
Call the resulting
ordered set Pn.
Then P4:
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More examples

P5: P6:
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Known properties: Sufficient conditions

Sufficient conditions for A ≥s B:
I Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
I Andrei Okounkov (1997)
I Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon

(2003)
I Anatol N. Kirillov (2004)
I Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
I François Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)
I McN., Steph van Willigenburg (2009, 2012)
I ...
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Necessary conditions for Schur-positivity

Notation. Write λ 4 µ if λ is less than or equal to µ in dominance
order, i.e. λ1 + · · ·λi ≤ µ1 + · · ·µi for all i .

Examples. 331 ≺ 421 21 ≺ 32 33 64 411

Theorem [McN. (2008)]. Let A and B be skew shapes. If sA − sB is
Schur-positive, then

rowsk (A) 4 rowsk (B) for all k .

In fact, it suffices to assume that supps(A) ⊇ supps(B).

Example.
A = B =

sA = s41 + s32 + 2s311 + s221 + s2111

sB = s41 + 2s32 + s311 + s221

So sA − sB is not Schur-positive but supps(A) ⊇ supps(B).
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Equivalent to row overlap conditions

Let rectsk ,`(A) denote the number of k × ` rectangular subdiagrams
contained inside A.

A = rects3,1(A) = 2, rects2,2(A) = 3, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:
I rowsk (A) = rowsk (B) for all k ;
I cols`(A) = cols`(B) for all `;
I rectsk ,`(A) = rectsk ,`(B) for all k , `.

Theorem [McN]. Let A and B be skew shapes. TFAE:
I rowsk (A) 4 rowsk (B) for all k ;
I cols`(A) 4 cols`(B) for all `;
I rectsk ,`(A) ≤ rectsk ,`(B) for all k , `.
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Summary so far

sA − sB is Schur-pos. supps(A) ⊇ supps(B)

rowsk (A) 4 rowsk (B) ∀k
cols`(A) 4 cols`(B) ∀`
rectsk,`(A) ≤ rectsk,`(B) ∀k , `

⇒ ⇒

Converse is very false.

Example.
A = B =

(211,1) (22,2)
sA = s31 + s211 sB = s22

New Goal: Find weaker algebraic conditions on A and B that
imply the overlap conditions.
What algebraic conditions are being encapsulated by the overlap
conditions?
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Insight from a more general setting

Example.
∑

i<j<k x6
i x4

j x9
k is not symmetric but it is quasisymmetric.

e.g.
coeff. of x6

1 x4
2 x9

3 = coeff. of x6
5 x4

9 x9
2014.

Definition. A formal power series f in variables x1, x2, . . . is
quasisymmetric if for all

I sequences a1,a2, . . . ,ak of exponents, and
I sequences i1 < i2 < · · · < ik and j1 < j2 < · · · < jk of indices,

coeff. of xa1
i1

xa2
i2
· · · xak

ik
in f = coeff. of xa1

j1
xa2

j2
· · · xak

jk
in f .

Bases.
I Monomial quasisymmetric functions Mα:

Given a composition α = (α1, . . . , αk ), e.g. α = (6,4,9),

Mλ =
∑

i1<···<ik

xα1
i1
. . . xαk

ik
.

I Gessel’s fundamental quasisymmetric functions Fα, e.g,
F32 = M32 +M212 +M122 +M1112 +M311 +M2111 +M1211 +M11111.
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F -basis of quasisymmetric functions
I Skew shape A.
I Standard Young tableau

(SYT) T of shape A.

I Descent set S(T ) = {3,5,8}.
I Descent composition

comp(T ) = 3231.

9

5

8

1

4

32

6 7

Then sA expands in the basis of fundamental quasisymmetric
functions as

sA =
∑

SYT T

Fcomp(T ).

Example.
s4432/31 = F3231 + · · · .

Facts.
I The F form a basis for the quasisymmetric functions.
I So notions of F -positivity and F -support make sense.
I Schur-positivity implies F -positivity (converse fails at n = 4).
I supps(A) ⊇ supps(B) implies suppF (A) ⊇ suppF (B)
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New results: filling the gap

Theorem. [McN. (2013)]

sA − sB is Schur-pos.

sA − sB is F -positive

supps(A) ⊇ supps(B)

suppF (A) ⊇ suppF (B)

rowsk (A) 4 rowsk (B) ∀k
cols`(A) 4 cols`(B) ∀`
rectsk,`(A) ≤ rectsk,`(B) ∀k , `

⇒

⇒ ⇒

⇐

⇓ ⇓

Conjecture. The rightmost implication is iff.

Evidence. Conjecture is true for:
I n ≤ 12 (others fail already at n = 4);
I F -multiplicity-free skew shapes (as determined by Christine

Bessenrodt and Steph van Willigenburg (2013));
I horizontal strips; ribbons whose rows all have length at least 2.
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n = 6 example

F -support containment Row overlap reverse dominance
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n = 12

n = 12 case has 12,042 edges.
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Summary

Theorem. [McN. (2013)]

sA − sB is Schur-pos.

sA − sB is F -positive

supps(A) ⊇ supps(B)

suppF (A) ⊇ suppF (B)

rowsk (A) 4 rowsk (B) ∀k
cols`(A) 4 cols`(B) ∀`
rectsk,`(A) ≤ rectsk,`(B) ∀k , `

⇒

⇒ ⇒
⇓ ⇓

Conjecture. The rightmost implication is iff.

Thank you!
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