Equivalent Characterizations of Lattice Supersolvability and Their Extensions

Peter McNamara

Joint work with **Hugh Thomas**

Joint Mathematics Meetings January 18th 2003

Slides and preprints available from http://www-math.mit.edu/~mcnamara/

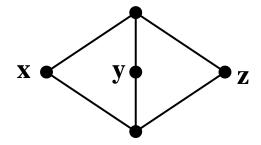
We say that a lattice L is distributive if

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

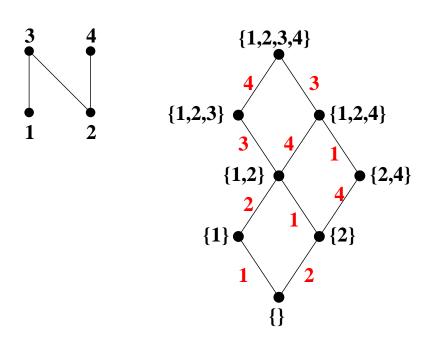
and

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

for all elements x, y and z of L.



Example The lattice of $order\ ideals$ of a poset P.



An edge-labelling of a poset P is said to be an S_n EL-labelling if it satisfies the following 2 conditions:

- 1. Every interval [x, y] of P has exactly one maximal chain with increasing labels
- 2. The labels along any maximal chain form a permutation of n.

Special case of *EL-labelling* (Björner):

2. The sequence of labels along this increasing maximal chain lexicographically precede the labels along any other maximal chain of [x, y].

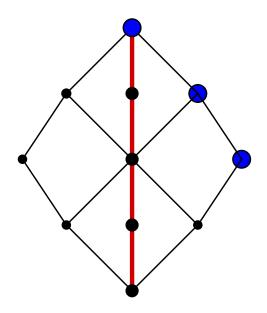
Who cares?

- EL-labelling \Rightarrow Shellable \Rightarrow Cohen-Macaulay
- Simple combinatorial interpretations of Möbius function, flag h-vector, etc.

What other classes of posets have S_n EL-labellings?

Definition(R. Stanley, 1972) A finite lattice L is said to be *supersolvable* if it contains a maximal chain \mathfrak{m} , called an M-chain of L, which together with any other chain of L generates a distributive sublattice.

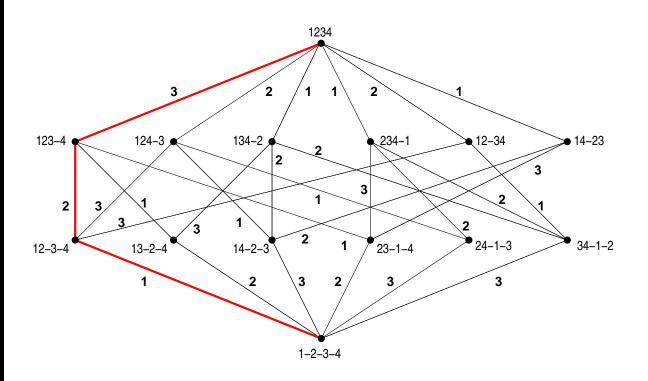
EXAMPLES



- Distributive lattices
- The lattice of partitions of $\{1, 2, \ldots, n\}$
- The lattice of non-crossing partitions of $\{1, 2, \ldots, n\}$
- The lattice of subgroups of a supersolvable group

QUESTION (Stanley) Are there any other lattices that have S_n EL-labellings?

THEOREM (McN.) A finite lattice has an S_n EL-labelling if and only if it is supersolvable.



Connections with modularity...

Definition An element x of a lattice L is said to be *left-modular* if, for all $y \leq z$ in L, we have

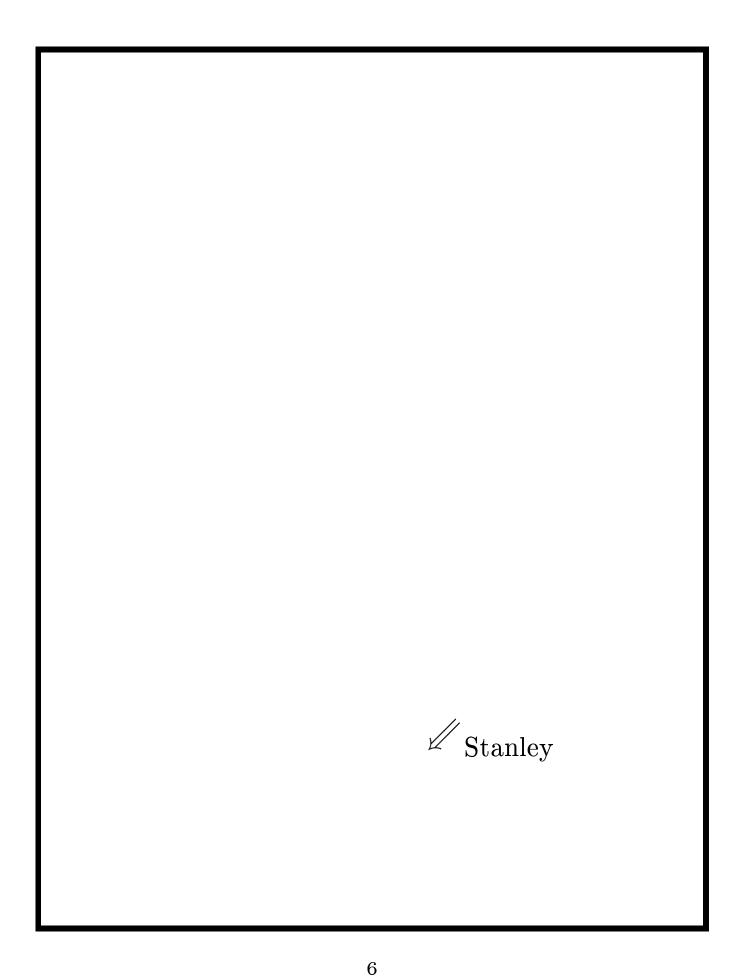
$$(x \lor y) \land z = (x \land z) \lor y.$$

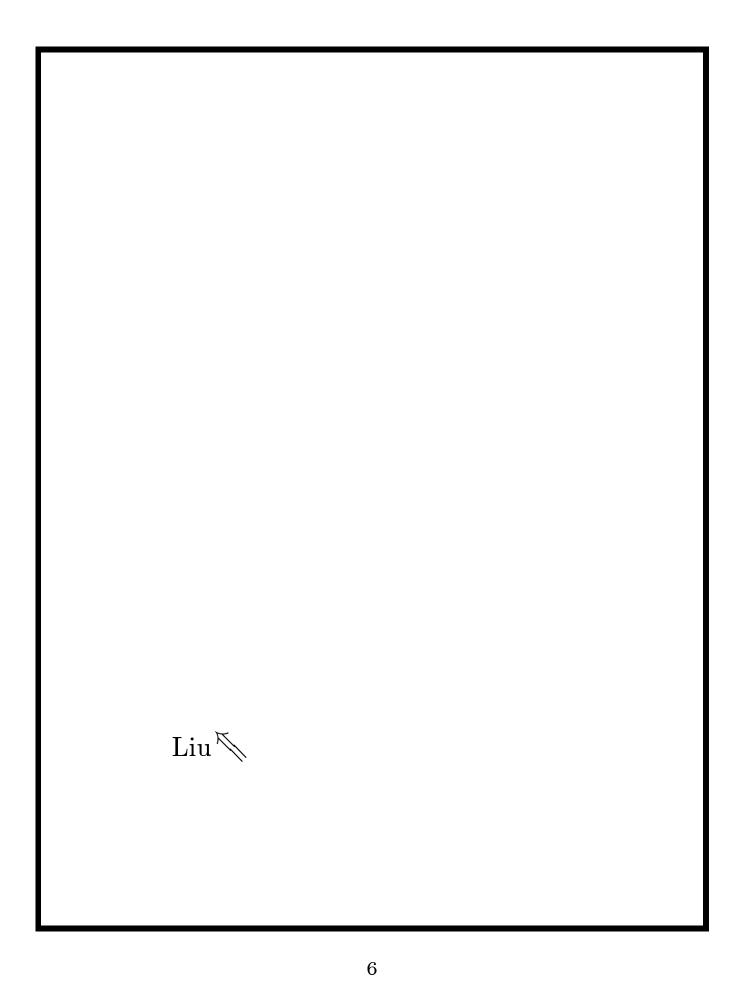
A chain of L is left-modular if each of its elements is left-modular.

Suppose L is a graded lattice.

$$\begin{bmatrix} L \text{ has an} \\ S_n \text{ EL-labelling} \end{bmatrix} \iff \begin{bmatrix} L \text{ is} \\ \text{supersolvable} \end{bmatrix}$$

L has a left-modular maximal chain





THEOREM Let L be graded lattice. TFAE:

- $1.\ L$ is supersolvable
- 2. L has an S_n EL-labelling
- 3. L has a left-modular maximal chain

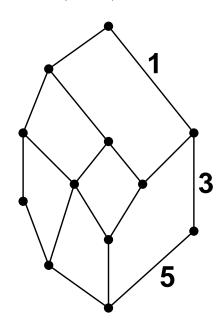
4.

How can we extend this?

- 3: L need not be graded
- 2: L need not be a lattice

Definition Let P be a (bounded) poset. An EL-labelling γ of P is said to be *interpolating* if, for any $y \lessdot u \lessdot z$, either

- (i) $\gamma(y, u) < \gamma(u, z)$ or
- (ii) the increasing chain from y to z, say $y = w_0 \lessdot w_1 \lessdot \cdots \lessdot w_r = z$, has the properties that its labels are strictly increasing and that $\gamma(w_0, w_1) = \gamma(u, z)$ and $\gamma(w_{r-1}, w_r) = \gamma(y, u)$.



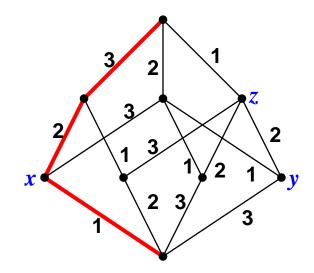
THEOREM (Thomas) A lattice has an interpolating EL-labelling if and only if it has a left modular maximal chain.

Generalizing to non-lattices:

P: a bounded poset with an S_n EL-labelling.

M: its increasing maximal chain.

Some "left modularity" property?



When $x \in M$, $x \vee y$ and $x \wedge y$ are well-defined.

In a lattice: $(x \vee y) \wedge z \geq y$ whenever $z \geq y$.

When $x \in M$, $(x \vee y) \wedge_y z$ is well-defined for $y \leq z$. Similarly, $(x \wedge z) \vee^z y$ is well-defined.

We call x a *viable* element of P.

We call M a *viable* maximal chain.

THEOREM (McN.-Thomas) A bounded poset has an interpolating EL-labelling if and only if it has a viable left modular maximal chain.

ь		_
•		
,	_	
()
•	-	_

	Graded	Not nec. graded
Lattice	1. Supersolvable	1. ?
	 Supersolvable S_n EL-labelling Left mod. max. chain 	2. Interp. EL-labelling
	3. Left mod. max. chain	3. Left mod. max. chain
Not	1. "Supersolvable"	1. ?
nec.	2. S_n EL-labelling	2. Interp. EL-labelling
Lattice	3. Viable left mod. m.c.	3. Viable left mod. m.c.
·	•	•