Vertex decomposable graphs
and obstructions to shellability

Russ Woodroofe
Washington U in St Louis
russw@math.wustl.edu
A simplicial complex Δ is *shellable* if its facets “fit nicely together”.

A simplicial complex Δ is *Cohen-Macaulay* if $H^i(\Delta) = 0$ for $i < \dim \Delta$, and if (recursively) every proper link is Cohen-Macaulay.

A simplicial complex Δ is *sequentially Cohen-Macaulay* if the pure i-skeleton (generated by all faces of dimension i) is Cohen-Macaulay for every i.

Every link of a shellable complex is shellable, and a shellable complex “is” a bouquet of high dimensional spheres, hence $\text{Shellable} \Rightarrow \text{sequentially Cohen-Macaulay}$.
Shellings

A simplicial complex Δ is *shellable* if its facets “fit nicely together”. Specifically, if there is an ordering $\sigma_1, \ldots, \sigma_m$ of the facets of Δ such that the intersection of σ_i with the union of preceding facets has dimension $(\dim \sigma_i - 1)$.

A simplicial complex Δ is *Cohen-Macaulay* if $H^i(\Delta) = 0$ for $i < \dim \Delta$, and if (recursively) every proper link is Cohen-Macaulay. A simplicial complex Δ is *sequentially Cohen-Macaulay* if the pure i-skeleton (generated by all faces of dimension i) is Cohen-Macaulay for every i.

Every link of a shellable complex is shellable, and a shellable complex “is” a bouquet of high dimensional spheres, hence $\text{Shellable} \implies \text{sequentially Cohen-Macaulay}$.

A simplicial complex Δ is \textit{shellable} if its facets “fit nicely together”. Specifically, if there is an ordering $\sigma_1, \ldots, \sigma_m$ of the facets of Δ such that the intersection of σ_i with the union of preceding facets has dimension $(\dim \sigma_i - 1)$.

$$\text{link}_\Delta \sigma = \{ \tau : \tau \cap \sigma = \emptyset \}$$

but $\tau \cup \sigma$ a face of Δ
A simplicial complex Δ is *shellable* if its facets “fit nicely together”. Specifically, if there is an ordering $\sigma_1, \ldots, \sigma_m$ of the facets of Δ such that the intersection of σ_i with the union of preceding facets has dimension $(\dim \sigma_i - 1)$.

$$\text{link}_\Delta \sigma = \{ \tau : \tau \cap \sigma = \emptyset \} \quad \text{but} \quad \tau \cup \sigma \text{ a face of } \Delta$$

A simplicial complex Δ is *Cohen-Macaulay* if $H_i(\Delta) = 0$ for $i < \dim \Delta$, and if (recursively) every proper link is Cohen-Macaulay.
A simplicial complex Δ is **shellable** if its facets “fit nicely together”. Specifically, if there is an ordering $\sigma_1, \ldots, \sigma_m$ of the facets of Δ such that the intersection of σ_i with the union of preceding facets has dimension $(\dim \sigma_i - 1)$.

$$\text{link}_\Delta \sigma = \{\tau : \tau \cap \sigma = \emptyset \quad \text{but } \tau \cup \sigma \text{ a face of } \Delta\}$$

A simplicial complex Δ is **Cohen-Macaulay** if $H_i(\Delta) = 0$ for $i < \dim \Delta$, and if (recursively) every proper link is Cohen-Macaulay. A simplicial complex Δ is **sequentially Cohen-Macaulay** if the pure i-skeleton (generated by all faces of dimension i) is Cohen-Macaulay for every i.
A simplicial complex Δ is \textit{shellable} if its facets “fit nicely together”. Specifically, if there is an ordering $\sigma_1, \ldots, \sigma_m$ of the facets of Δ such that the intersection of σ_i with the union of preceding facets has dimension $(\text{dim } \sigma_i - 1)$.

$$\text{link}_\Delta \sigma = \{ \tau : \tau \cap \sigma = \emptyset \} \text{ but } \tau \cup \sigma \text{ a face of } \Delta$$

A simplicial complex Δ is \textit{Cohen-Macaulay} if $H_i(\Delta) = 0$ for $i < \text{dim } \Delta$, and if (recursively) every proper link is Cohen-Macaulay. A simplicial complex Δ is \textit{sequentially Cohen-Macaulay} if the \textit{pure i-skeleton} (generated by all faces of dimension i) is Cohen-Macaulay for every i.

Every link of a shellable complex is shellable, and a shellable complex “is” a bouquet of high dimensional spheres, hence
A simplicial complex Δ is *shellable* if its facets “fit nicely together”. Specifically, if there is an ordering $\sigma_1, \ldots, \sigma_m$ of the facets of Δ such that the intersection of σ_i with the union of preceding facets has dimension $(\dim \sigma_i - 1)$.

$$\text{link}_\Delta \sigma = \{\tau : \tau \cap \sigma = \emptyset \text{ but } \tau \cup \sigma \text{ a face of } \Delta\}$$

A simplicial complex Δ is *Cohen-Macaulay* if $H_i(\Delta) = 0$ for $i < \dim \Delta$, and if (recursively) every proper link is Cohen-Macaulay. A simplicial complex Δ is *sequentially Cohen-Macaulay* if the pure i-skeleton (generated by all faces of dimension i) is Cohen-Macaulay for every i.

Every link of a shellable complex is shellable, and a shellable complex “is” a bouquet of high dimensional spheres, hence Shellable \implies sequentially Cohen-Macaulay
Shellability is difficult to work with directly, so we usually use some tool to find shellings.
Shellability is difficult to work with directly, so we usually use some tool to find shellings.

A *shedding vertex* v of a simplicial complex Δ is such that no face of $\text{link}_\Delta v$ is a facet of $\Delta \setminus v$.

Lemma: (Wachs) If $v \in \Delta$ is a shedding vertex, and $\Delta \setminus v$ and $\text{link}_\Delta v$ are shellable, then Δ is shellable.

Shelling: Shelling order of $\Delta \setminus v$ followed by shelling of $v^* \text{link}_\Delta v$.

(So shedding vertex “sorts” facets with v after facets wo/ v.)

A complex Δ is *vertex decomposable* if it is a simplex or (recursively) has a shedding vertex v such that $\Delta \setminus v$ and $\text{link}_\Delta v$ are vertex decomposable.

Vertex decomposable \implies Shellable \implies seq. Cohen-Macaulay
Shellability is difficult to work with directly, so we usually use some tool to find shellings.

A *shedding vertex* v of a simplicial complex Δ is such that no face of $\text{link}_\Delta v$ is a facet of $\Delta \setminus v$.

Lemma: (Wachs) If $v \in \Delta$ is a shedding vertex, and $\Delta \setminus v$ and $\text{link}_\Delta v$ are shellable, then Δ is shellable.
Shedding vertices and vertex decomposability

Shellability is difficult to work with directly, so we usually use some tool to find shellings.

A *shedding vertex* \(v \) of a simplicial complex \(\Delta \) is such that no face of \(\text{link}_\Delta v \) is a facet of \(\Delta \setminus v \).

Lemma: (Wachs) If \(v \in \Delta \) is a shedding vertex, and \(\Delta \setminus v \) and \(\text{link}_\Delta v \) are shellable, then \(\Delta \) is shellable.

Shelling: Shelling order of \(\Delta \setminus v \) followed by shelling of \(v \ast \text{link}_\Delta v \).
(So shedding vertex “sorts” facets with \(v \) after facets wo/ \(v \).)
Shellability is difficult to work with directly, so we usually use some tool to find shellings.

A *shedding vertex* \(v \) of a simplicial complex \(\Delta \) is such that no face of link\(_\Delta \) \(v \) is a facet of \(\Delta \setminus v \).

Lemma: (Wachs) If \(v \in \Delta \) is a shedding vertex, and \(\Delta \setminus v \) and link\(_\Delta \) \(v \) are shellable, then \(\Delta \) is shellable.

Shelling: Shelling order of \(\Delta \setminus v \) followed by shelling of \(v \ast \) link\(_\Delta \) \(v \). (So shedding vertex “sorts” facets with \(v \) after facets wo/ \(v \).)

A complex \(\Delta \) is *vertex decomposable* if it is a simplex or (recursively) has a shedding vertex \(v \) such that \(\Delta \setminus v \) and link\(_\Delta \) \(v \) are vertex decomposable.
Shellability is difficult to work with directly, so we usually use some tool to find shellings.

A *shedding vertex* \(v \) of a simplicial complex \(\Delta \) is such that no face of \(\text{link}_\Delta v \) is a facet of \(\Delta \setminus v \).

Lemma: (Wachs) If \(v \in \Delta \) is a shedding vertex, and \(\Delta \setminus v \) and \(\text{link}_\Delta v \) are shellable, then \(\Delta \) is shellable.

Shelling: Shelling order of \(\Delta \setminus v \) followed by shelling of \(v \times \text{link}_\Delta v \). (So shedding vertex “sorts” facets with \(v \) after facets wo/ \(v \).

A complex \(\Delta \) is *vertex decomposable* if it is a simplex or (recursively) has a shedding vertex \(v \) such that \(\Delta \setminus v \) and \(\text{link}_\Delta v \) are vertex decomposable.

Vertex decomposable \(\implies \) Shellable \(\implies \) seq. Cohen-Macaulay
Table of contents

Part 1: Graphs

Part 2: Clutters
Basic notions

A graph $G = (V, E)$ is a simple graph, with no loops or multiedges.
Basic notions

A graph $G = (V, E)$ is a simple graph, with no loops or multiedges.

An *independent set* in G is a subset of vertices with no edges between them.
A graph $G = (V, E)$ is a simple graph, with no loops or multiedges. An independent set in G is a subset of vertices with no edges between them. That is, an independent set induces a totally disconnected subgraph.
Basic notions

A graph $G = (V, E)$ is a simple graph, with no loops or multiedges. An *independent set* in G is a subset of vertices with no edges between them. That is, an independent set induces a totally disconnected subgraph.

The *independence complex* of a graph $G = (V, E)$ is the simplicial complex with:

- Vertex set V
- Face set $\{\text{independent sets of } G\}$

A complex is *flag* if it is the independence complex of some graph.

Approach: Examine graph theoretic properties of G and their consequences for the independence complex.
A graph $G = (V, E)$ is a simple graph, with no loops or multiedges. An *independent set* in G is a subset of vertices with no edges between them. That is, an independent set induces a totally disconnected subgraph.

The *independence complex* of a graph $G = (V, E)$ is the simplicial complex with:

- Vertex set V
- Face set $\{\text{independent sets of } G\}$
A graph \(G = (V, E) \) is a simple graph, with no loops or multiedges. An *independent set* in \(G \) is a subset of vertices with no edges between them. That is, an independent set induces a totally disconnected subgraph.

The *independence complex* of a graph \(G = (V, E) \) is the simplicial complex with:
- Vertex set \(V \) and
- Face set \{independent sets of \(G\}\).
Basic notions

A graph $G = (V, E)$ is a simple graph, with no loops or multiedges.
An *independent set* in G is a subset of vertices with no edges between them.
That is, an independent set induces a totally disconnected subgraph.

The *independence complex* of a graph $G = (V, E)$ is the simplicial complex with:
Vertex set V and
Face set $\{\text{independent sets of } G\}$.

A complex is *flag* if it is the independence complex of some graph.
Basic notions

A graph $G = (V, E)$ is a simple graph, with no loops or multiedges. An *independent set* in G is a subset of vertices with no edges between them. That is, an independent set induces a totally disconnected subgraph.

The *independence complex* of a graph $G = (V, E)$ is the simplicial complex with:
- Vertex set V and
- Face set $\{\text{independent sets of } G\}$.

A complex is *flag* if it is the independence complex of some graph.

Approach: Examine graph theoretic properties of G and their consequences for the independence complex.
Basic notions – dictionary

The *closed neighborhood* of a vertex v is

$$N[v] = \{v \text{ and all its neighbors}\}.$$
Basic notions – dictionary

The *closed neighborhood* of a vertex v is

$$N[v] = \{v \text{ and all its neighbors}\}.$$

Dictionary

Simplicial complexes

Graphs (Independence complex)
The *closed neighborhood* of a vertex v is

$$N[v] = \{v \text{ and all its neighbors}\}.$$
The *closed neighborhood* of a vertex v is

$$N[v] = \{v \text{ and all its neighbors}\}.$$

Dictionary

<table>
<thead>
<tr>
<th>Simplicial complexes</th>
<th>Graphs (Independence complex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{link}_\Delta v = {F : F \cup v \text{ a face}}$</td>
<td>$\text{link}: G \setminus N[v]$</td>
</tr>
</tbody>
</table>
Basic notions – dictionary

The *closed neighborhood* of a vertex \(v \) is

\[
N[v] = \{ v \text{ and all its neighbors} \}.
\]

Dictionary

Simplicial complexes

\[
\text{link}_{\Delta} v = \{ F : F \cup v \text{ a face} \}
\]

Shedding vertex: faces of \(\text{link}_{\Delta} v \) are not maximal faces of \(\Delta \setminus v \).

Graphs (Independence complex)

\[
\text{link}: \ G \setminus N[v]
\]
The *closed neighborhood* of a vertex v is

$$N[v] = \{v \text{ and all its neighbors}\}.$$
Basic notions – dictionary

The *closed neighborhood* of a vertex \(v \) is

\[
N[v] = \{ v \text{ and all its neighbors} \}.
\]

Dictionary

Simplicial complexes

\[
\text{link}_\Delta v = \{ F : F \cup v \text{ a face} \}
\]

Shedding vertex: faces of \(\text{link}_\Delta v \) are not maximal faces of \(\Delta \setminus v \).

Vertex decomposable:
\(\Delta \) a simplex or
has a shedding vertex \(v \) with
\(\Delta \setminus v \) and \(\text{link}_\Delta v \) vertex decomposable.

Graphs (Independence complex)

\[
\text{link}: G \setminus N[v]
\]

Shedding vertex: independent sets of \(G \setminus N[v] \) are not maximal independent sets of \(G \setminus v \).
The *closed neighborhood* of a vertex v is

$$N[v] = \{v \text{ and all its neighbors}\}.$$
Chordal graphs are vertex decomposable

A graph is *chordal* if it contains no induced cycles of length > 3.

Equivalently, every cycle of length ≥ 4 has a “chord”.

\[\text{chord} \]
Chordal graphs are vertex decomposable

A graph is *chordal* if it contains no induced cycles of length > 3.

Equivalently, every cycle of length ≥ 4 has a “chord”.

Theorem: (Francisco and Van Tuyl) If G is a chordal graph, then the independence complex of G is sequentially Cohen-Macaulay.

Theorem: (me, Dochtermann-Engström) If G is a chordal graph, then the independence complex of G is vertex decomposable.

Theorem: (me) If G contains no induced cycles of length other than 3 or 5, then G is vertex decomposable.

Theorem: (me) If for every independent A in a graph G, the subgraph $G \setminus N[A]$ has a “simplicial vertex”, then the independence complex of G is vertex decomposable.
Chordal graphs are vertex decomposable

A graph is *chordal* if it contains no induced cycles of length > 3.

Equivalently, every cycle of length ≥ 4 has a “chord”.

Theorem: (Francisco and Van Tuyl) If G is a chordal graph, then the independence complex of G is sequentially Cohen-Macaulay.

Several improvements:
Chordal graphs are vertex decomposable

A graph is *chordal* if it contains no induced cycles of length > 3.

Equivalently, every cycle of length ≥ 4 has a “chord”.

Theorem: (Francisco and Van Tuyl) If G is a chordal graph, then the independence complex of G is sequentially Cohen-Macaulay.

Several improvements:

Theorem: (me, Dochtermann-Engström) If G is a chordal graph, then the independence complex of G is vertex decomposable.
Chordal graphs are vertex decomposable

A graph is *chordal* if it contains no induced cycles of length > 3.

Equivalently, every cycle of length ≥ 4 has a “chord”.

Theorem: (Francisco and Van Tuyl) If G is a chordal graph, then the independence complex of G is sequentially Cohen-Macaulay.

Several improvements:

Theorem: (me, Dochtermann-Engström) If G is a chordal graph, then the independence complex of G is vertex decomposable.

Theorem: (me) If G contains no induced cycles of length other than 3 or 5, then G is vertex decomposable.
Chordal graphs are vertex decomposable

A graph is *chordal* if it contains no induced cycles of length > 3.

Equivalently, every cycle of length ≥ 4 has a “chord”.

Theorem: (Francisco and Van Tuyl) If G is a chordal graph, then the independence complex of G is sequentially Cohen-Macaulay.

Several improvements:

Theorem: (me, Dochtermann-Engström) If G is a chordal graph, then the independence complex of G is vertex decomposable.

Theorem: (me) If G contains no induced cycles of length other than 3 or 5, then G is vertex decomposable.

Theorem: (me) If for every independent A in a graph G the subgraph $G \setminus N[A]$ has a “simplicial vertex”, then the independence complex of G is vertex decomposable.
Chordal graphs are vertex decomposable – sketch

Shedding vertex \(v \): independent sets of \(G \setminus N[v] \) are not maximal independent sets of \(G \setminus v \).

Main fact: If \(G \) is chordal, then \(G \) has vertex \(w \) with \(N[w] \) a complete subgraph.

Such a \(w \) is called a *simplicial vertex*.

Lemma: If \(N[w] \subseteq N[v] \), then \(v \) is a shedding vertex.

Proof: Augment any independent set in \(G \setminus N[v] \) by \(w \), giving a larger independent set in \(G \setminus v \).

Corollary: Any neighbor of a simplicial vertex is a shedding vertex.

Hence a chordal graph is vertex decomposable.

To show that every link has simplicial vertex \(\Rightarrow \) vertex dec., notice that repeated deletion of neighbors of \(w \) leaves \(w \cup G \setminus N[w] \).
Chordal graphs are vertex decomposable – sketch

Shedding vertex \(v \): independent sets of \(G \setminus N[v] \) are not maximal independent sets of \(G \setminus v \).

Main fact: If \(G \) is chordal, then \(G \) has vertex \(w \) with \(N[w] \) a complete subgraph.
Such a \(w \) is called a *simplicial vertex*.

Lemma: If \(N[w] \subseteq N[v] \), then \(v \) is a shedding vertex.
Chordal graphs are vertex decomposable – sketch

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.

Main fact: If G is chordal, then G has vertex w with $N[w]$ a complete subgraph. Such a w is called a *simplicial vertex*.

Lemma: If $N[w] \subseteq N[v]$, then v is a shedding vertex.

Proof: Augment any independent set in $G \setminus N[v]$ by w, giving a larger independent set in $G \setminus v$. □
Chordal graphs are vertex decomposable – sketch

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.

Main fact: If G is chordal, then G has vertex w with $N[w]$ a complete subgraph. Such a w is called a simplicial vertex.

Lemma: If $N[w] \subseteq N[v]$, then v is a shedding vertex.

Proof: Augment any independent set in $G \setminus N[v]$ by w, giving a larger independent set in $G \setminus v$. □

Corollary: Any neighbor of a simplicial vertex is a shedding vertex. Hence a chordal graph is vertex decomposable.
Chordal graphs are vertex decomposable – sketch

Shedding vertex ν: independent sets of $G \setminus N[\nu]$ are not maximal independent sets of $G \setminus \nu$.

Main fact: If G is chordal, then G has vertex w with $N[w]$ a complete subgraph. Such a w is called a *simplicial vertex*.

Lemma: If $N[w] \subseteq N[\nu]$, then ν is a shedding vertex.

Proof: Augment any independent set in $G \setminus N[\nu]$ by w, giving a larger independent set in $G \setminus \nu$. □

Corollary: Any neighbor of a simplicial vertex is a shedding vertex. Hence a chordal graph is vertex decomposable.

To show that every link has simplicial vertex \implies vertex dec., notice that repeated deletion of neighbors of w leaves $w \cup G \setminus N[w]$.
Simplicial / shedding example

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.

Simplicial vertex w: $N[w]$ is a complete subgraph.
Simplicial / shedding example

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.

Simplicial vertex w: $N[w]$ is a complete subgraph.
Simplicial / shedding example

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.
Simplicial vertex w: $N[w]$ is a complete subgraph.
Simplicial / shedding example

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.
Simplicial vertex w: $N[w]$ is a complete subgraph.
Simplicial / shedding example

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.

Simplicial vertex w: $N[w]$ is a complete subgraph.
Simplicial / shedding example

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.

Simplicial vertex w: $N[w]$ is a complete subgraph.
Simplicial / shedding example

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.

Simplicial vertex w: $N[w]$ is a complete subgraph.
Vertex decomposable graphs – sketch

Shedding vertex \(v \): independent sets of \(G \setminus N[v] \) are not maximal independent sets of \(G \setminus v \).
Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.

Theorem: (me) If G contains no induced cycles of length other than 3 or 5, then G is vertex decomposable.
Vertex decomposable graphs – sketch

Theorem: (me) If G contains no induced cycles of length other than 3 or 5, then G is vertex decomposable.

Sketch: A non-trivial theorem of Chvátal, Rusu, and Sritharan says that a graph with no cycles ≥ 6 which is not the disjoint union of complete graphs has a “3-simplicial path”.

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.
Vertex decomposable graphs – sketch

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.

Theorem: (me) If G contains no induced cycles of length other than 3 or 5, then G is vertex decomposable.

Sketch: A non-trivial theorem of Chvátal, Rusu, and Sritharan says that a graph with no cycles ≥ 6 which is not the disjoint union of complete graphs has a “3-simplicial path”. This is a path of length 3 that does not sit inside any chordless path of length 5.
Vertex decomposable graphs – sketch

Theorem: (me) If G contains no induced cycles of length other than 3 or 5, then G is vertex decomposable.

Sketch: A non-trivial theorem of Chvátal, Rusu, and Sritharan says that a graph with no cycles ≥ 6 which is not the disjoint union of complete graphs has a “3-simplicial path”. This is a path of length 3 that does not sit inside any chordless path of length 5.

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.

![Diagram showing a 3-simplicial path and its effect on vertex shedding](image-url)
Vertex decomposable graphs – sketch

Shedding vertex v: independent sets of \(G \setminus N[v] \) are not maximal independent sets of \(G \setminus v \).

Theorem: (me) If \(G \) contains no induced cycles of length other than 3 or 5, then \(G \) is vertex decomposable.

Sketch: A non-trivial theorem of Chvátal, Rusu, and Sritharan says that a graph with no cycles \(\geq 6 \) which is not the disjoint union of complete graphs has a “3-simplicial path”. This is a path of length 3 that does not sit inside any chordless path of length 5.

The middle vertex \(v \) of a 3-simplicial path is a shedding vertex:
Vertex decomposable graphs – sketch

Shedding vertex v: independent sets of $G \setminus N[v]$ are not maximal independent sets of $G \setminus v$.

Theorem: (me) If G contains no induced cycles of length other than 3 or 5, then G is vertex decomposable.

Sketch: A non-trivial theorem of Chvátal, Rusu, and Sritharan says that a graph with no cycles ≥ 6 which is not the disjoint union of complete graphs has a “3-simplicial path”. This is a path of length 3 that does not sit inside any chordless path of length 5.

The middle vertex v of a 3-simplicial path is a shedding vertex: An independent set in $G \setminus N[v]$ can be augmented by either w_1 or w_2, since it can’t neighbor both of them.
Obstructions to shellability

The cyclic graphs C_n are not shellable or sequentially Cohen-Macaulay for $n \neq 3, 5$.
Obstructions to shellability

The cyclic graphs C_n are not shellable or sequentially Cohen-Macaulay for $n \neq 3, 5$. (Consider top skeleta.)
Obstructions to shellability

The cyclic graphs C_n are not shellable or sequentially Cohen-Macaulay for $n \neq 3, 5$. (Consider top skeleta.)

C_6:
Obstructions to shellability

The cyclic graphs C_n are not shellable or sequentially Cohen-Macaulay for $n \neq 3, 5$. (Consider top skeleta.)

C_6:

C_7:
Obstructions to shellability

The cyclic graphs C_n are not shellable or sequentially Cohen-Macaulay for $n \neq 3, 5$. (Consider top skeleta.)

C_6:

C_7:

C_7 is Möbius:
Obstructions to shellability

The cyclic graphs C_n are not shellable or sequentially Cohen-Macaulay for $n \neq 3, 5$. (Consider top skeleta.)

C_6:

C_7 is Möbius:

Corollary: (me) The obstructions to shellability (minimal non-shellable complexes) in flag complexes are exactly the independence complexes of C_n, $n \neq 3, 5$.
Table of contents

Part 1: Graphs

Part 2: Clutters
Flag complexes can be described in terms of their facets (maximal faces), or in terms of their minimal non-faces.

A general simplicial complex can also be described in terms of minimal non-faces. The non-faces can be any set system C, with the restriction that $X, Y \in C \Rightarrow X \not\subseteq Y$.

This is a kind of set system, called a clutter or Sperner system.

Can we relate the clutter-theoretic properties of C to shellability of its independence complex?
Flag complexes can be described in terms of their facets (maximal faces), or in terms of their minimal non-faces. The minimal non-faces of a flag complex form a graph.
Graphs → Clutters

Flag complexes can be described in terms of their facets (maximal faces), or in terms of their minimal non-faces. The minimal non-faces of a flag complex form a graph.

In the 1st section, we related the graph theoretic properties of the non-faces of a flag complex to shellability of the complex.
Flag complexes can be described in terms of their facets (maximal faces), or in terms of their minimal non-faces. The minimal non-faces of a flag complex form a graph.

In the 1st section, we related the graph theoretic properties of the non-faces of a flag complex to shellability of the complex.

A general simplicial complex can also be described in terms of minimal non-faces.
Flag complexes can be described in terms of their facets (maximal faces), or in terms of their minimal non-faces. The minimal non-faces of a flag complex form a graph.

In the 1st section, we related the graph theoretic properties of the non-faces of a flag complex to shellability of the complex.

A general simplicial complex can also be described in terms of minimal non-faces. The non-faces can be any set system C, with the restriction that $X, Y \in C \Rightarrow X \not\subset Y$.
Flag complexes can be described in terms of their facets (maximal faces), or in terms of their minimal non-faces. The minimal non-faces of a flag complex form a graph.

In the 1st section, we related the graph theoretic properties of the non-faces of a flag complex to shellability of the complex.

A general simplicial complex can also be described in terms of minimal non-faces. The non-faces can be any set system \(C \), with the restriction that \(X, Y \in C \implies X \not\subset Y \).

This is a kind of set system, called a clutter or Sperner system.
Flag complexes can be described in terms of their facets (maximal faces), or in terms of their minimal non-faces. The minimal non-faces of a flag complex form a graph.

In the 1st section, we related the graph theoretic properties of the non-faces of a flag complex to shellability of the complex.

A general simplicial complex can also be described in terms of minimal non-faces. The non-faces can be any set system \mathcal{C}, with the restriction that $X, Y \in \mathcal{C} \implies X \not\subseteq Y$.

This is a kind of set system, called a clutter or Sperner system.

Can we relate the clutter-theoretic properties of \mathcal{C} to shellability of its independence complex?
Chordal clutters

We call a vertex v of a clutter simplicial if for every two edges e_1 and e_2 containing v, there is an edge $e_3 \subseteq (e_1 \cup e_2) \setminus v$.
Chordal clutters

We call a vertex v of a clutter simplicial if for every two edges e_1 and e_2 containing v, there is an edge $e_3 \subseteq (e_1 \cup e_2) \setminus v$.

Example: 1) Any simplicial vertex in a graph.
We call a vertex v of a clutter simplicial if for every two edges e_1 and e_2 containing v, there is an edge $e_3 \subseteq (e_1 \cup e_2) \setminus v$.

Example:
1) Any simplicial vertex in a graph.
2) Any vertex in a matroid (circuit clutter).
We call a vertex v of a clutter simplicial if for every two edges e_1 and e_2 containing v, there is an edge $e_3 \subseteq (e_1 \cup e_2) \setminus v$.

Example: 1) Any simplicial vertex in a graph.
 2) Any vertex in a matroid (circuit clutter).
 3) Any vertex contained in only one edge.
We call a vertex \(v \) of a clutter simplicial if for every two edges \(e_1 \) and \(e_2 \) containing \(v \), there is an edge \(e_3 \subseteq (e_1 \cup e_2) \setminus v \).

Example: 1) Any simplicial vertex in a graph.
 2) Any vertex in a matroid (circuit clutter).
 3) Any vertex contained in only one edge.

Definition: We call a clutter chordal if the non-face clutter of every link and induced subcomplex has a simplicial vertex.
Chordal clutters

We call a vertex v of a clutter simplicial if for every two edges e_1 and e_2 containing v, there is an edge $e_3 \subseteq (e_1 \cup e_2) \setminus v$.

Example: 1) Any simplicial vertex in a graph.
2) Any vertex in a matroid (circuit clutter).
3) Any vertex contained in only one edge.

Definition: We call a clutter chordal if the non-face clutter of every link and induced subcomplex has a simplicial vertex.

Example: 1) Chordal graphs.
Chordal clutters

We call a vertex v of a clutter simplicial if for every two edges e_1 and e_2 containing v, there is an edge $e_3 \subseteq (e_1 \cup e_2) \setminus v$.

Example: 1) Any simplicial vertex in a graph.
2) Any vertex in a matroid (circuit clutter).
3) Any vertex contained in only one edge.

Definition: We call a clutter chordal if the non-face clutter of every link and induced subcomplex has a simplicial vertex.

Example: 1) Chordal graphs.
2) The circuit clutter of a matroid.
We call a vertex \(v \) of a clutter simplicial if for every two edges \(e_1 \) and \(e_2 \) containing \(v \), there is an edge \(e_3 \subseteq (e_1 \cup e_2) \setminus v \).

Example: 1) Any simplicial vertex in a graph.
2) Any vertex in a matroid (circuit clutter).
3) Any vertex contained in only one edge.

Definition: We call a clutter chordal if the non-face clutter of every link and induced subcomplex has a simplicial vertex.

Example: 1) Chordal graphs.
2) The circuit clutter of a matroid.
3) “Acyclic” hypergraphs.
We call a vertex v of a clutter simplicial if for every two edges e_1 and e_2 containing v, there is an edge $e_3 \subseteq (e_1 \cup e_2) \setminus v$.

Example: 1) Any simplicial vertex in a graph.
2) Any vertex in a matroid (circuit clutter).
3) Any vertex contained in only one edge.

Definition: We call a clutter chordal if the non-face clutter of every link and induced subcomplex has a simplicial vertex.

Example: 1) Chordal graphs.
2) The circuit clutter of a matroid.
3) “Acyclic” hypergraphs.

Theorem: (me) The independence complex of a chordal clutter is shellable.
Technique: Define *shedding face* and *k-decomposability* in non-pure complexes,
Technique: Define *shedding face* and *k-decomposability* in non-pure complexes, generalizing Provan-Billera and Björner-Wachs.
Technique: Define *shedding face* and *k-decomposability* in non-pure complexes, generalizing Provan-Billera and Björner-Wachs.

Remark: The independence complexes of chordal clutters form a large family of shellable complexes where every induced subcomplex and link are shellable.
Technique: Define *shedding face* and *k-decomposability* in non-pure complexes, generalizing Provan-Billera and Björner-Wachs.

Remark: The independence complexes of chordal clutters form a large family of shellable complexes where every induced subcomplex and link are shellable.

This is a beginning to the general obstruction to shellability problem.
Technique: Define *shedding face* and *k-decomposability* in non-pure complexes, generalizing Provan-Billera and Björner-Wachs.

Remark: The independence complexes of chordal clutters form a large family of shellable complexes where every induced subcomplex and link are shellable.

This is a beginning to the general obstruction to shellability problem.

Application: there are 21 obstructions to shellability on 6 vertices that have every link shellable. (by GAP computation)
Reference:

Thank you!

Russ Woodroofe
ruww@math.wustl.edu