H-4.1 **Elementary Discrete-Domain Functions (Sequences):

Discrete-domain functions are defined for $n \in \mathbb{Z}$.

H-4.1.1 Sequence Notation:

We use the following notation to indicate the elements of a sequence $x[n]$ between index n_L and index n_H:

$$x[n] = \{ x[n_L], x[n_L + 1], \ldots, x[n_H - 1], x[n_H] \}.$$

The elements outside of the given range are assumed to be zero (unless stated otherwise). The element that is associated with index $n = 0$ is indicated with an arrow:

$$x[n] = \{ \ldots, x[-2], x[-1], x[0], x[1], x[2], \ldots \} \uparrow.$$

If the arrow is omitted then the first given element in the sequence is assumed to be the element at index zero $x[n] = \{ x[0], x[1], x[2], \ldots \}$.

H-4.1.2 Step Sequence:

$$\mu[n] = \begin{cases}
0 & \text{for } n < 0 \\
1 & \text{for } n \geq 0
\end{cases}$$

H-4.1.3 Kronecker Delta Sequence:

$$\delta[n] = \begin{cases}
1 & \text{for } n = 0 \\
0 & \text{for } n \neq 0
\end{cases}$$

H-4.2 Classification of Discrete-Domain Signals:

We consider discrete-domain signals $x[n]$ that are defined for $n \in \mathbb{Z}$. The range of discrete-domain signals may be real ($x[n] \in \mathbb{R}$) or complex ($x[n] \in \mathbb{C}$).

H-4.2.1 Periodic Signals:

A discrete-domain signal $x[n]$ is periodic with period N if there is a $N \in \mathbb{Z}$ such that $x[n] = x[n - N]$ for all $n \in \mathbb{Z}$.

H-4.2.2 Symmetric Signals:

A discrete-domain signal $x[n]$ is of even symmetry if $x[n] = x[-n]$. It is of odd symmetry if $x[n] = -x[-n]$. A (complex-valued) signal is of even Hermitian symmetry if $x[n] = x^*[n]$. It is of odd Hermitian symmetry if $x[n] = -x^*[n]$.
H-4.2.3 Symmetry Decompositions:
A discrete-domain signal $x[n]$ can be decomposed into its
- even part $\frac{1}{2}(x[n] + x[-n])$
- odd part $\frac{1}{2}(x[n] - x[-n])$
- conjugate symmetric part $\frac{1}{2}(x[n] + x^*[−n])$ (even Hermitian symmetry)
- conjugate antisymmetric part $\frac{1}{2}(x[n] - x^*[−n])$ (odd Hermitian symmetry).

H-4.2.4 Bounded Signals:
A discrete-domain signal $x[n]$ is bounded if $|x[n]| \leq B_x < \infty$ for some finite $B_x \in \mathbb{R}^+$. (In writing B_x we imply the smallest number such that $|x[n]| \leq B_x$.)

H-4.2.5 Energy Signals:
A discrete-domain signal $x[n]$ is an energy signal or square-summable signal if its energy E_x is finite.
$$E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$$

H-4.2.6 Power Signals:
A discrete-domain signal $x[n]$ is a power signal if its power P_x is finite.
$$P_x = \lim_{K \to \infty} \frac{1}{2K+1} \sum_{n=-K}^{K} |x[n]|^2 < \infty$$
A periodic signal $x[n]$ with period N is a power signal with $P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$.

H-4.2.7 Absolutely Summable Signals:
A discrete-domain signal $x[n]$ is absolutely summable if
$$S_x = \sum_{n=-\infty}^{\infty} |x[n]| < \infty.$$

H-4.2.8 Finite Length Signals:
A discrete-domain signal $x[n]$ is of finite length if there exists a n_1 and a n_2 with $n_1 \leq n_2$ such that $x[n] = 0$ for all $n < n_1$ and $n > n_2$. Let \tilde{n}_1 denote the largest possible n_1 such that $x[n] = 0$ for all $n < \tilde{n}_1$ and let \tilde{n}_2 denote the smallest possible n_2 such that $x[n] = 0$ for all $n > \tilde{n}_2$ then the length of $x[n]$ is defined by:
$$L_x = \tilde{n}_2 - \tilde{n}_1 + 1.$$
Note that the length of a signal $x[n]$ that is identically equal to zero for all $n \in \mathbb{Z}$ is not defined!
H-4.2.9 Causal and Anti-Causal Signals:
A discrete-domain signal \(x[n] \) is causal if \(x[n] = 0 \) for all \(n < 0 \). It is anticausal if \(x[n] = 0 \) for all \(n > 0 \).

H-4.3 Elementary Discrete-Domain Signal Operations:
H-4.3.1 Convolution:
The discrete-domain convolution of two signals \(x[n] \) and \(h[n] \) is defined by
\[
y[n] = h[n] \ast x[n] = \sum_{k=-\infty}^{\infty} h[k] x[n - k].
\]
Convolution generally involves folding, shifting, multiplication, and summation.

H-4.3.2 Properties of Convolution:
The discrete-domain convolution operator \(\ast \) has the following properties:

a) Commutativity: \(x[n] \ast h[n] = h[n] \ast x[n] \)
b) Distributivity: \(x[n] \ast (h_1[n] + h_2[n]) = x[n] \ast h_1[n] + x[n] \ast h_2[n] \)
c) Associativity: \((x_1[n] \ast x_2[n]) \ast x_3[n] = x_1[n] \ast (x_2[n] \ast x_3[n]) \)
d) Shift Property: \(h[n] \ast x[n] = y[n] \Rightarrow h[n-k] \ast x[n] = y[n-k] \)
e) Convolution Length: \(y[n] = h[n] \ast x[n] \Rightarrow L_y \leq L_h + L_x - 1 \)

H-4.3.3 Elementary Convolution Identities:

a) \(x[n] \ast \delta[n] = x[n] \) (i.e. \(x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n - k] \))
b) \(\mu[n] \ast \mu[n] = (n+1) \mu[n] \)

H-4.3.4 Properties of the Kronecker Delta Sequence:

a) Sum: \(\sum_{n=-\infty}^{\infty} \delta[n] = 1 \)
b) Exchange: \(x[n] \delta[n-k] = x[k] \delta[n-k] \)
c) Scaling: \(\delta[Kn] = \delta[n] \) for \(K \in \mathbb{Z} \)
d) Convolution: \(x[n] \ast \delta[n-k] = x[n-k] \)
e) Symmetry: \(\delta[n] = \delta[-n] \)

H-4.3.5 Deterministic Correlation:
The (deterministic) correlation of two energy signals \(x[n] \) and \(y[n] \) is defined by
\[
r_{xy}[k] = \sum_{n=-\infty}^{\infty} x[n+k] y^*[n] = x[k] \ast y^*[-k].
\]
For two power signals \(x[n] \) and \(y[n] \) we define respectively
\[
\tilde{r}_{xy}[k] = \lim_{K \to \infty} \frac{1}{2K+1} \sum_{n=-K}^{K} x[n+k] y^*[n].
\]
For two signals $x[n]$ and $y[n]$ that are both periodic with period N we obtain

$$\hat{r}_{xy}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n+k] y^*[n].$$

H-4.4 Classification of Discrete-Domain Systems:

We consider discrete-domain systems \mathcal{T} with input $x[n]$ and output $y[n]$.

$$y[n] = \mathcal{T}\{x[n]\}$$

H-4.4.1 Linear Systems:

A discrete-domain system \mathcal{T} is linear if for any two arbitrary input signals $x_1[n]$, $x_2[n]$ and for any two constants $\alpha_1, \alpha_2 \in \mathbb{R}$ (or \mathbb{C}) we have

$$\mathcal{T}\{\alpha_1 x_1[n] + \alpha_2 x_2[n]\} = \alpha_1 \mathcal{T}\{x_1[n]\} + \alpha_2 \mathcal{T}\{x_2[n]\}.$$

H-4.4.2 Time-Invariant Systems:

A discrete-domain system \mathcal{T} is time-invariant if $y[n] = \mathcal{T}\{x[n]\}$ implies that $y[n-k] = \mathcal{T}\{x[n-k]\}$ for any arbitrary input signal $x[n]$ any arbitrary delay $k \in \mathbb{R}$.

H-4.4.3 Causal Systems:

A discrete-domain system \mathcal{T} is causal if the output $y[n]$ at time n only depends on current and past input values $x[k]$ for $k \leq n$ and/or only depends on past output values $y[k]$ for $k < n$.

H-4.4.4 BIBO Stable Systems:

A discrete-domain system \mathcal{T} is bounded-input bounded-output (BIBO) stable if any bounded input $|x[n]| \leq B_x < \infty$ leads to a bounded output $|y[n]| \leq B_y < \infty$.

H-4.4.5 Passive and Lossless Systems:

A system with arbitrary square summable input $x[n]$ and output $y[n]$ is called passive if $\mathcal{E}_y \leq \mathcal{E}_x$. Systems for which $\mathcal{E}_y = \mathcal{E}_x$ for any square summable input $x[n]$ are called lossless.

H-4.4.6 Up-Sampling and Down-Sampling Systems:

A discrete-domain system that inserts $L-1$ ($L \in \mathbb{N}$) zeros between every element of an input sequence $x[n]$ is called an up-sampling system of order L:

$$y[n] = \begin{cases} x[n/L] & \text{for } n = Lk \text{ with } k \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases}$$

A discrete-domain system is called a down-sampling system of order L if it discards all elements of input $x[n]$ that are not indexed by a multiple of L:

$$y[n] = x[n \cdot L]$$
H-4.5 **Discrete Linear Time-Invariant (DLTI) Systems:**

H-4.5.1 **Impulse Response:**

Let T denote a DLTI system. If we let the *impulse response* $h[n]$ of T be defined as $h[n] = T\{ \delta[n] \}$ then the response of T to an arbitrary input $x[n]$ is given by

$$y[n] = x[n] \ast h[n].$$

H-4.5.2 **Causal DLTI Systems:**

A DLTI system T is *causal* if and only if its impulse response $h[n]$ is a causal signal:

$$h[n] = 0 \text{ for } n < 0.$$

H-4.5.3 **BIBO Stable DLTI Systems:**

A DLTI system T is *BIBO stable* if and only if its impulse response $h[n]$ is absolutely summable, i.e. if $\mathcal{S}_h < \infty$.

H-4.5.4 **FIR and IIR Systems:**

A DLTI system is called a *finite impulse response system* (FIR system) if the length of the impulse response $h[n]$ is finite, i.e. if $\mathcal{L}_h < \infty$. A DLTI system is called an *infinite impulse response system* (IIR system) if $\mathcal{L}_h = \infty$.

H-4.5.5 **Eigenfunctions of DLTI Systems:**

Input functions of the form $x[n] = z_0^n$ are *eigenfunctions* of DLTI systems.

$$y[n] = T\{ z_0^n \} = h[n] \ast z_0^n = z_0^n \cdot \sum_{k=-\infty}^{\infty} h[k] z_0^{-k} = z_0^n \cdot H(z_0)$$

When passed through a DLTI system, these eigenfunctions remain unchanged up to a constant (possibly complex) gain $H(z_0)$.

H-4.6 **The Z-Transform:**

H-4.6.1 **Definition of the (Bilateral) Z-Transform:**

The *(bilateral)* z-transform $X(z)$ of signal $x[n]$ is defined by

$$X(z) = \mathcal{Z}\{ x[n] \} = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

with $\text{ROC}: 0 \leq r_1 < |z| < r_2 \leq +\infty$.

The z-transform always consists of both the complex function $X(z)$ and its associated *region of convergence* (ROC). The region of convergence is the set of all complex values z for which the transform summation converges. The ROC is generally a ring in the complex plane, bounded by an inner radius r_1 and an outer radius r_2 ($r_1, r_2 \in \mathbb{R}^+$). The radius r_1 is determined by the rate of exponential increase/decrease of the causal part of $x[n]$. Similarly, r_2 is determined by the rate of exponential increase/decrease of the anti-causal part of $x[n]$.

H-4.6.2 The Inverse Z-Transform:
The inverse z-transform is defined as
\[x[n] = Z^{-1}\{X(z)\} = \frac{1}{2\pi j} \oint_{C} X(z) z^{n-1} \, dz \]
in which the integration contour \(C \) is given by
\[C: r e^{j\omega} \mid \begin{align*}
\omega &= +\pi \\
\omega &= -\pi
\end{align*} \text{ for some fixed } r \in]r_1, r_2 [. \]

H-4.6.3 Complex Contour Integration:
If a sufficiently smooth complex contour \(C \) can be described with a parameter description \(p(\varphi) \in \mathbb{C} \) for \(\varphi \in [a, b] \) then \(\int_{C} F(s) \, ds = \int_{a}^{b} F(p(\varphi)) p'(\varphi) \, d\varphi \). A complex contour integral can thus be reduced to a conventional Riemann integral.

H-4.6.4 Five Elementary Z-Transform Identities:

<table>
<thead>
<tr>
<th>(x[n] = Z^{-1}{X(z)})</th>
<th>(X(z) = Z{x[n]})</th>
<th>ROC:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta[n])</td>
<td>1</td>
<td>(z \in \mathbb{C})</td>
</tr>
<tr>
<td>(\alpha^n \mu[n])</td>
<td>(\frac{z}{z-\alpha})</td>
<td>(</td>
</tr>
<tr>
<td>(-\alpha^n \mu[-n-1])</td>
<td>(\frac{z}{z-\alpha})</td>
<td>(</td>
</tr>
<tr>
<td>(n \alpha^n \mu[n])</td>
<td>(\frac{\alpha z}{(z-\alpha)^2})</td>
<td>(</td>
</tr>
<tr>
<td>(-n \alpha^n \mu[-n-1])</td>
<td>(\frac{\alpha z}{(z-\alpha)^2})</td>
<td>(</td>
</tr>
</tbody>
</table>

H-4.6.5 The Z-Transform of Causal Signals:
Note that every valid z-transform expression \(X(z) \) has only one causal inverse transform \(x[n] \). We do not need to know the ROC explicitly to find the correct causal inverse of \(X(z) \).
H-4.6.6 A Short Table of Z-Transforms of Causal Signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Z-Transform</th>
<th>ROC:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x[n] = Z^{-1}{X(z)}$</td>
<td>$X(z) = Z{x[n]}$</td>
<td>$</td>
</tr>
<tr>
<td>$\mu[n]$</td>
<td>$\frac{z}{z-1}$</td>
<td>$</td>
</tr>
<tr>
<td>$\alpha^n \cos(\omega_0 n) \mu[n]$</td>
<td>$\frac{z^2 - \alpha z \cos \omega_0}{z^2 - 2\alpha z \cos \omega_0 + \alpha^2}$</td>
<td>$</td>
</tr>
<tr>
<td>$\alpha^n \sin(\omega_0 n) \mu[n]$</td>
<td>$\frac{\alpha z \sin \omega_0}{z^2 - 2\alpha z \cos \omega_0 + \alpha^2}$</td>
<td>$</td>
</tr>
</tbody>
</table>

H-4.6.7 Properties of the Bilateral Z-Transform:

<table>
<thead>
<tr>
<th>Operation</th>
<th>$x[n] = Z^{-1}{X(z)}$</th>
<th>$X(z) = Z{x[n]}$ and ROCa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>$\alpha_1 x_1[n] + \alpha_2 x_2[n]$</td>
<td>$\alpha_1 X_1(z) + \alpha_2 X_2(z)$ ROC$_1 \cap$ ROC$_2$</td>
</tr>
<tr>
<td>Time Shift</td>
<td>$x[n-k]$</td>
<td>$X(z) z^{-k}$ and same ROCb</td>
</tr>
<tr>
<td>Modulation</td>
<td>$\alpha^n x[n]$</td>
<td>$X(z/\alpha)$ ROCc is scaled by $</td>
</tr>
<tr>
<td>Differentiation in Z-Domain</td>
<td>$n x[n]$</td>
<td>$-z \frac{d}{dz} X(z)$ and same ROC</td>
</tr>
<tr>
<td>Conjugation</td>
<td>$x^*[n]$</td>
<td>$X^(z^)$ and same ROC</td>
</tr>
<tr>
<td>Convolution</td>
<td>$x[n] \ast h[n]$</td>
<td>$X(z) \cdot H(z)$ ROC$_1 \cap$ ROC$_2$</td>
</tr>
</tbody>
</table>

aThe actual ROC of the result of an operation may be larger than the one provided in the table. Check the common literature on z-transforms for the details.

bSame ROC possibly except $z = 0$ if $k > 0$.

cIf the original ROC of $X(z)$ is given by $r_1 < |z| < r_2$ then the scaled ROC of $X(z/\alpha)$ is given by $|\alpha| r_1 < |z| < |\alpha| r_2$
H-4.7 **DLTI Systems and the Z-Transform:**

H-4.7.1 Transfer Functions and BIBO Stable Systems:

Let $H(z) = \mathcal{Z}\{h[n]\}$ denote the z-transform of the impulse response $h[n]$ of a DLTI system. $H(z)$ is called the *transfer function* of the DLTI system. A DLTI system is *BIBO stable* if the unit circle ($|z| = 1$) is contained in the ROC of its transfer function $H(z)$.

H-4.7.2 Linear Constant Coefficient Difference Equations:

Every linear constant coefficient difference equation with input $x[n]$ and output $y[n]$ establishes a causal linear time-invariant system.

$$y[n] = -a_1 y[n-1] - a_2 y[n-2] - \ldots$$

$$\ldots - a_N y[n-N] + b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] + \ldots$$

$$\ldots + b_M x[n-M]$$

By transforming the difference equation into the z-domain we obtain the transfer function $H(z)$ of the associated DLTI system. The transfer function of a linear constant coefficient difference equation is rational in variable z:

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \ldots + b_M z^{-M}}{1 + a_1 z^{-1} + a_2 z^{-2} + \ldots + a_N z^{-N}}$$

Since $H(z)$ is the transfer function of a causal system we do not need to explicitly provide its ROC. Furthermore, we can write every rational transfer function of the form above in terms of its poles p_i (for $i = 1 \ldots N$) and zeros z_i (for $i = 1 \ldots M$).

$$H(z) = b_0 \cdot z^{(N-M)} \cdot \frac{(z-z_1)(z-z_2)\ldots(z-z_M)}{(z-p_1)(z-p_2)\ldots(z-p_N)}$$

The term b_0 is often referred to as the *gain* of the system. Note, however, that b_0 is usually *not* equal to the DC gain or the high-frequency gain of a system!

H-4.7.3 Stability of Causal DLTI Systems with Rational Transfer Functions:

A causal DLTI system with a rational transfer function $H(z)$ is stable if and only if the magnitude of all of its poles is strictly smaller than one ($|p_i| < 1$ for $i = 1 \ldots N$), i.e. if all poles are strictly inside of the unit circle.

H-4.7.4 System I/O Description in the Z-Domain:

Due to the convolution theorem of the z-transform we can find the output $y[n]$ of a DLTI system for a given input $x[n]$ conveniently in the Z-Domain:

$$Y(z) = \mathcal{Z}\{y[n]\} = H(z) \cdot X(z) = \mathcal{Z}\{h[n]\} \cdot \mathcal{Z}\{x[n]\}.$$

If $Y(z)$ is rational then we can find its inverse transform $y[n]$ via a partial fraction expansion in z^{-1} and a table lookup.
H-4.8 **The Discrete-Time Fourier Transform (DTFT):**

H-4.8.1 **Definition of the Discrete-Time Fourier Transform:**

The *discrete-time Fourier transform* (DTFT) and its inverse are defined by

\[
X(\omega) = \text{DTFT}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}
\]

and

\[
x[n] = \text{DTFT}^{-1}\{X(\omega)\} = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{j\omega n} d\omega.
\]

The existence of the discrete-time Fourier transform is guaranteed for absolutely summable signals. For other signals meaningful definitions for the DTFT may be found, but the existence is not guaranteed in general.

H-4.8.2 **Some Elementary DTFT Identities:**

<table>
<thead>
<tr>
<th>(x[n] = \text{DTFT}^{-1}{X(\omega)})</th>
<th>(X(\omega) = \text{DTFT}{x[n]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x[n] = 1)</td>
<td>(X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k))</td>
</tr>
<tr>
<td>(x[n] = \delta[n - k])</td>
<td>(X(\omega) = e^{-j\omega k})</td>
</tr>
<tr>
<td>(x[n] = e^{j\omega n})</td>
<td>(X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi k))</td>
</tr>
<tr>
<td>(x[n] = \mu[n])</td>
<td>(X(\omega) = \frac{1}{1-e^{-j\omega}} + \pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k))</td>
</tr>
<tr>
<td>(x[n] = \alpha^n \mu[n]\text{ with }</td>
<td>\alpha</td>
</tr>
<tr>
<td>(x[n] = \begin{cases} 1 & \text{for }</td>
<td>n</td>
</tr>
<tr>
<td>(x[n] = \begin{cases} \omega_0/\pi \frac{\sin(\omega_0 n)}{\pi n} & \text{for } n = 0 \ \frac{1}{\pi n} & \text{for } n \neq 0 \end{cases})</td>
<td>(\hat{X}(\omega) = \begin{cases} 1 & \text{for }</td>
</tr>
</tbody>
</table>

| \(X(\omega) = \sum_{k=-\infty}^{\infty} \hat{X}(\omega - 2\pi k)\) |

Note that we can directly derive the DTFT $X(\omega)$ of a signal $x[n]$ from its z-transform $X(z)$ if the ROC of $X(z)$ contains the unit circle.

$$X(\omega) = X(z) \mid _{z=e^{j\omega}} \text{ if } e^{j\omega} \in \text{ROC} \text{ for } \omega \in [-\pi, \pi]$$

There is an ambiguity in our notation for the z-transform $X(z)$ and the DTFT $X(\omega)$. The distinction is achieved with the name of the independent variable: (z) for the z-transform and (ω) for the DTFT.

H-4.8.3 Properties of the DTFT:

<table>
<thead>
<tr>
<th>Operation</th>
<th>$x[n] = \text{DTFT}^{-1}{X(\omega)}$</th>
<th>$X(\omega) = \text{DTFT}{x[n]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>$\alpha_1 x_1[n] + \alpha_2 x_2[n]$</td>
<td>$\alpha_1 X_1(\omega) + \alpha_2 X_2(\omega)$</td>
</tr>
<tr>
<td>Time Shift</td>
<td>$x[n - k]$</td>
<td>$X(\omega) e^{-j\omega k}$</td>
</tr>
<tr>
<td>Frequency Shift</td>
<td>$x[n] e^{j\omega_0 n}$</td>
<td>$X(\omega - \omega_0)$</td>
</tr>
<tr>
<td>Time Reversal</td>
<td>$x[-n]$</td>
<td>$X(-\omega)$</td>
</tr>
<tr>
<td>Conjugation</td>
<td>$x^*[n]$</td>
<td>$X^*(-\omega)$</td>
</tr>
<tr>
<td>Frequency</td>
<td>$nx[n]$</td>
<td>$j \frac{\partial}{\partial \omega} X(\omega)$</td>
</tr>
<tr>
<td>Differentiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convolution</td>
<td>$x[n] \circledast h[n]$</td>
<td>$X(\omega) \cdot H(\omega)$</td>
</tr>
<tr>
<td>Cross-Correlation</td>
<td>$x[n] \circledast y^*[-n]$</td>
<td>$X(\omega) \cdot Y^*(\omega)$</td>
</tr>
<tr>
<td>Multiplication</td>
<td>$x[n] \cdot y[n]$</td>
<td>$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(\lambda)Y(\omega - \lambda) d\lambda$</td>
</tr>
</tbody>
</table>