1 Problems

1. 2.8.1

Solution:
(a) This map is an automorphism. It is a homomorphism since \(T(x + y) = -(x + y) = -x - y = T(x) + T(y) \). This function is a one-to-one correspondence since it equals its own inverse. That is, \(T(T(x)) = x \) for every \(x \).

(b) This map is an automorphism. It is a homomorphism since \(T(xy) = (xy)^2 = x^2y^2 = T(x)T(y) \). This function is a one-to-one correspondence since it has an inverse. Let \(S(x) = \sqrt{x} \), then for every positive \(x \) we have \(T(S(x)) = S(T(x)) = x \).

(c) This map is not an automorphism. Let \(G = (a) \). Then \(T \) is definitely a homomorphism since \(T(a^i a^j) = a^{3(i+j)} = a^{3i} a^{3j} = T(a^i)T(a^j) \).

This function is not, however, a correspondence. For example, \(T(a^4) = a^{12} = e = T(e) \) so \(T \) is not one-to-one.

(d) This map is not even a homomorphism. It is one-to-one and onto since \(T(T(g)) = g \) for any \(g \). However, if we represent \(G \) as \(G = \{ e, y, y^2, x, xy, xy^2 \} \) with \(x^2 = y^3 = e \) and \(xy = x y^2 \), then \(T(xy) = (xy)^{-1} = y^2 x = xy \)

but \(T(x)T(y) = xy^2 \neq xy \).

2. 2.8.4

Solution: We’ve already seen that for any group \(G \), if \(Z \) is the center of \(G \) then \(G/Z \cong \text{Inn} G \). Thus all we need to do is prove that in \(S_3 \), the center is trivial. You can explicitly compute that no \(e \neq g \in S_3 \) commutes with every other element. A slicker way to do this problem is to recall that the center is always normal, and we’ve previously seen that the only non-trivial normal subgroup of \(G \) is the subgroup \(H = \{ e, y, y^2 \} \). Of course \(y \notin Z \) since \(y \) does not commute with \(x \). Thus \(Z = \{ e \} \) and the assertion follows.

3. 2.8.5

Solution: Let \(\varphi \in \text{Aut} G \) and \(\tau_g \in \text{Inn} G \). We must prove that \(\varphi \circ \tau_g \circ \varphi^{-1} \in \text{Inn} G \). Recall that \(\tau_g \) is defined by \(\tau_g(x) = gxg^{-1} \). Thus for any \(x \in G \) we have

\[
\varphi \circ \tau_g \circ \varphi^{-1}(x) = \varphi(g \varphi^{-1}(x)g^{-1}) = \varphi(g) \varphi(\varphi^{-1}(x)) \varphi(g)^{-1} = \varphi(g) \varphi(g)^{-1} = \tau_{\varphi(g)}(x).
\]

Thus indeed \(\varphi \circ \tau_g \circ \varphi^{-1} = \tau_{\varphi(g)} \in \text{Inn} G \) and so \(\text{Inn}(G) \) is normal in \(\text{Aut}(G) \).
4. 2.8.6

Solution: Any automorphism $\varphi : G \to G$ must satisfy $\varphi(e) = e$. Thus since φ permutes the other three elements of G, we see that $o(\text{Aut}(G)) \leq 6$. Let $\sigma : G \to G$ be function satisfying

$$\sigma(e) = e, \sigma(a) = b, \sigma(b) = a, \sigma(ab) = ab$$

and let $\tau : G \to G$ be the function satisfying

$$\tau(e) = e, \tau(a) = b, \tau(b) = ab, \tau(ab) = a.$$

Convince yourselves that σ and τ both define homomorphisms, and since they are correspondences we have $\sigma, \tau \in \text{Aut}(G)$. Check further that $\sigma^2 = \tau^3 = I$ and $\tau\sigma = \sigma\tau^2$, so $H = (\sigma, \tau) \subseteq \text{Aut}(G)$ is a non-abelian group of order 6. Since $o(\text{Aut}(G)) \leq 6$ we get $\text{Aut}(G) \cong S_3$.

5. Let $\varphi : G \to \overline{G}$ be an isomorphism of G onto \overline{G}. For $a \in G$ prove that $a^n = e$ if and only if $\varphi(a)^n = \overline{e}$. Use this to prove that $o(a) = o(\varphi(a))$.

(This shows you that if $\varphi : C_n \to C_n$ is an automorphism, then necessarily $\varphi(a) = a^i$ for some i which is relatively prime to n. Check out Example 2.8.1 for the full identification of $\text{Aut}(C_n)$.)

Solution: Let $\psi : G \to \overline{G}$ be any homomorphism. We first prove by induction that $\psi(a^n) = \psi(a)^n$ for any $n \in \mathbb{Z}$. This is clear for $n = 0, 1$, so assume it is true for $n = k$ where $k \geq 1$. Then

$$\psi(a^{k+1}) = \psi(a^k a) = \psi(a^k)\psi(a) = \psi(a)^k\psi(a) = \psi(a)^{k+1}. $$

To get this for negative integers, recall that $\psi(a^{-1}) = \psi(a)^{-1}$ so for any $n \geq 1$ we have

$$\psi(a^{-n}) = \psi((a^{-1})^n) = \psi(a^{-1})^n = (\psi(a)^{-1})^n = \psi(a)^{-n}. $$

With this in mind, if $\varphi : G \to \overline{G}$ is an isomorphism and $a^n = e$, then

$$\overline{e} = \overline{\varphi(e)} = \varphi(a^n) = \varphi(a)^n. $$

Conversely, if $\varphi(a)^n = \overline{e}$ then we get

$$e = \varphi^{-1}(\overline{e}) = \varphi^{-1}(\varphi(a)^n) = \varphi^{-1}(\varphi(a^n)) = a^n. $$

It follows immediately that $o(a) = o(\varphi(a))$. We just showed that $\varphi(a)^{o(a)} = \overline{e}$ so $o(\varphi(a)) \mid o(a)$ and conversely $a^{o(\varphi(a))} = e$ so $o(a) \mid o(\varphi(a))$ proving equality.

6. A subgroup $C \subseteq G$ is said to be a characteristic subgroup of G if $\varphi(C) \subseteq C$ for every $\varphi \in \text{Aut}(G)$.

(a) Prove that any characteristic subgroup of G is normal.

Solution: We are told that every automorphism $\varphi \in \text{Aut}(G)$ has the property $\varphi(C) \subseteq C$. In particular, for every $g \in G$, the inner automorphism τ_g has the property $\tau_g(C) \subseteq C$. This says that for every g, $gCg^{-1} \subseteq C$ which implies that C is normal.

(b) Let G' be the commutator subgroup of G (see 2.7.5). Prove that G' is a characteristic subgroup of G.

Page 2
Solution: Recall that if \(S = \{ aba^{-1}b^{-1} | a, b \in G \} \) then \(G' = (S) \). If \(\varphi \in \text{Aut}(G) \), then for any \(a, b \in G \) we have
\[
\varphi(aba^{-1}b^{-1}) = \varphi(a)\varphi(b)\varphi(a)^{-1}\varphi(b)^{-1}
\]
which shows that \(\varphi(S) \subseteq S \). Since \(\varphi^{-1} \in \text{Aut}(G) \) as well, the same argument shows that \(\varphi^{-1}(S) \subseteq S \) so in fact \(\varphi(S) = S \). The proof is now easy since \(G' \) consists of products of elements of \(S \) and their inverses. For practice, we give a proof using intersections. We know
\[
G' = \bigcap_{H \subseteq G} H
\]
where the intersection is taken over all subgroups. Thus
\[
\varphi(G') = \bigcap_{H \subseteq G} \varphi(H) = \bigcap_{K \subseteq G} K
\]
since \(S \subseteq H \) if and only \(\varphi(S) \subseteq \varphi(H) \). But we just showed \(\varphi(S) = S \) so
\[
\varphi(G') = \bigcap_{K \subseteq G} K = G'
\]
proving that \(G' \) is characteristic.

(c) Prove that the center \(Z \subseteq G \) is a characteristic subgroup.

Solution: Let \(\varphi \in \text{Aut}(G) \) and \(z \in Z \). We must prove that \(\varphi(z) \in Z \) as well. To this end, let \(y \in G \). Since \(\varphi \) is an automorphism, there exists \(x \in G \) so that \(\varphi(x) = y \). Then
\[
y\varphi(z)y^{-1} = \varphi(x)\varphi(z)\varphi(x)^{-1} = \varphi(xzx^{-1}) = \varphi(z)
\]
since \(z \in Z \). This show that \(\varphi(z) \) commutes with \(y \), and since \(y \) is arbitrary, we indeed have \(\varphi(z) \in Z \).

7. Let \(G \) be a group and \(\varphi \in \text{Aut}(G) \), a non-inner automorphism. We define a new group as follows. If \(o(\varphi) = r \), then introduce a new symbol \(x \) and let
\[
S = \{ x^i g | 0 \leq i < r \text{ and } g \in G \}.
\]
Thus if \(G \) is finite then \(o(S) = r \cdot o(G) \). Define multiplication on \(S \) via the rules \(x^r = e \) and \(gx = x\varphi(g) \).

Solution: Before presenting a solution, I’d like to make a quick point about this problem. Hidden in this problem is a uniqueness and existence statement. We’d like to define a product on \(S \) in such a way that \(S \) is a group and that \(x^r = e \) and \(gx = x\varphi(g) \). This is the existence part of the problem. On the other hand, the rules \(x^r = e \) and \(gx = x\varphi(g) \) tell us how we should define the multiplication law on \(S \). This means that if there is a group law on \(S \) then it is unique. What we are doing in this problem is finding the unique group law on \(S \) for which \(S \) is a group and \(x^r = e \) and \(gx = x\varphi(g) \) under this law.

(a) Find the form of the product \((x^ig)(x^{i'}g') \) as \(x^a\tilde{g} \).
(b) Using your formula from part a), prove that \(S \) forms a non-abelian group.

Solution: For completeness, we will show that our multiplication law satisfies all the group laws.

- **Closure:** Since \(0 \leq [i+i'] < r \) and \(\varphi^{i'}(g)g' \in G \), our set \(S \) is closed under our multiplication law.

- **Associativity:** Let \(i, j, k \in \{0, 1, \ldots, r-1\} \) and \(g_1, g_2, g_3 \in G \). Then
 \[
 (x^i g_1)(x^j g_2)(x^k g_3) = (x^{i+j+k} \varphi(g_1) g_2) g_3 = x^{i+j+k} \varphi(g_1) g_2 g_3
 \]
 whereas
 \[
 ((x^i g_1)(x^j g_2))(x^k g_3) = (x^{i+j} \varphi(g_1) g_2) x^k g_3 = x^{i+j+k} \varphi(g_1) g_2 g_3.
 \]
 Equality now follows since addition modulo \(r \) is associative and since \(\varphi \) is a homomorphism of order \(r \), we get
 \[
 \varphi^k(\varphi^j(g_1) g_2) g_3 = \varphi^k(\varphi^j(g_1)) \varphi^k(g_2) g_3 = \varphi^{j+k}(g_1) \varphi^k(g_2) g_3 = \varphi^{j+k}(g_1) \varphi^k(g_2) g_3.
 \]

- **Identity:** The element \(x^0 e \) will be the identity element of \(S \). This follows since
 \[
 (x^0 e)(x^i g) = x^i \varphi^0(e) g = x^i g
 \]
 and
 \[
 (x^i g)(x^0 e) = x^i \varphi^0(g) e = x^i g.
 \]

- **Inverses:** The inverse of \(x^i g \) will be \(x^{-i} \varphi^{-i}(g^{-1}) \). This is because
 \[
 (x^i g)(x^{-i} \varphi^{-i}(g^{-1})) = x^i \varphi^{-i}(g^{-1}) \varphi^{-i}(g^{-1}) = x^0 e
 \]
 and
 \[
 (x^{r-i} \varphi^{-i}(g^{-1}))(x^i g) = x^{r-i} \varphi^{-i}(g^{-1}) g = x^0 \varphi^{-i}(g^{-1}) g = x^0 e
 \]
 since \(o(\varphi) = r \).

The fact that \(S \) is non-abelian follows from \(\varphi \) being non-inner. Since \(\varphi \) is non-inner, there must exist \(g \in G \) so that \(g \neq \varphi(g) \). Then
\[
 gx = x \varphi(g) \neq xg
\]
(c) Prove that $G \subseteq S$ is normal and that $S/G \cong C_r$ the cyclic group of r elements. (Hint: you can prove both of these at once by finding an onto homomorphism $S \to C_r$ which has kernel G.)

Solution: Let $C_r = (a)$ and define a function $\psi: S \to C_r$ by $\psi(x^i g) = a^i$. It is easy to check that ψ is a homomorphism. We have

$$\psi((x^i g)(x^{i'} g')) = \psi(x^{i+i'} g' g') = a^{i+i'}$$

whereas

$$\psi(x^i g)\psi(x^{i'} g') = a^i a^{i'} = a^{i+i'}$$

and equality follows since $o(a) = r$ so $a^{i+i'} = a^{i+i'}$. The map ψ is trivially onto, and $x^i g \in \ker(\psi)$ if and only if a^i is the identity element of C_r, proving that $\ker(\psi) = \{x^0 g | g \in G\}$ which is just G. Thus the isomorphism theorems tell us that G is normal in S and

$$S/G \cong C_r.$$
Next we show that \(\psi \) of \(G \) is well-defined. If \(Na = Nb \), then \(ab^{-1} \in N \). Thus \(\varphi(ab^{-1}) = \varphi(a) \varphi(b)^{-1} \in \varphi(N) = N \) as well. So \(N \varphi(a) = N \varphi(b) \) proving that \(\psi(Na) = \psi(Nb) \).

Solution: First, we must prove that \(\psi \) is well-defined. If \(Na = Nb \), then \(ab^{-1} \in N \). Thus \(\varphi(ab^{-1}) = \varphi(a) \varphi(b)^{-1} \in \varphi(N) = N \) as well. So \(N \varphi(a) = N \varphi(b) \) proving that \(\psi(Na) = \psi(Nb) \).

Next we show that \(\psi \) is a homomorphism. If \(a, b \in G \) then

\[
\psi(NaNb) = \psi(Nab) = N \varphi(ab) = N \varphi(a)N \varphi(b) = \psi(a)\psi(b).
\]

To compute the kernel of \(\psi \), note that \(\psi(Nx) = N \) if and only if \(\varphi(x) \in N \). The map \(\varphi \) is an automorphism so its inverse function \(\varphi^{-1} \) is well-defined, and \(N = \varphi^{-1}(\varphi(N)) = \varphi^{-1}(N) \). Thus \(\varphi(x) \in N \) if and only if \(x \in N \) which proves that only the coset \(N \) is an element of \(\ker(\psi) \). This proves that \(\psi \) is one-to-one.

To see that \(\psi \) is onto, let \(X \) be any coset in \(G/N \). Then there exists \(c \in G \) with \(X = Nc \). Since \(\psi \) is onto, there is \(b \in G \) with \(\varphi(b) = c \). Then \(\psi(Nb) = N \varphi(n) = Nc = X \) and so we see that \(\psi \) is onto.

2 For Fun

1. 2.8.12

Solution: This is a fun question, it essentially boils down to cleverly using Lagrange’s Theorem repeatedly. Let \(n = o(G) \) and \(H = \{ g \in G | T(g) = g^{-1} \} \). We do not know that \(H \) is a subgroup of \(G \), only that \(\#H > .75n \). Let \(h \in H \) and consider the set \(S = H \cap Hh \). Since \(\#H > .75n \) and \(\#Hh > .75n \) we have that \(\#S > .5n \). If \(x \in S \) then there exists \(h_1, h_2 \in H \) so that \(x = h_1 = h_2h \).

As \(S \subseteq H \) we know that \(T(x) = x^{-1} \). Of course

\[
x^{-1} = h_1^{-1} = (h_2h)^{-1} = h^{-1}h_2^{-1}.
\]

We also know that \(T \) is a homomorphism so \(T(x) = T(h_2h) = T(h_2)T(h) \). Since \(h_2, h \in H \) we get

\[
x^{-1} = T(x) = T(h_2)T(h) = h_2^{-1}h^{-1}.
\]

This shows that \(h^{-1}h_2^{-1} = h_2^{-1}h^{-1} \) or equivalently \(hh_2 = h_2h \). Since \(x = h_2h = hh_2 \) we have that \(x \) and \(h \) commute. If we define the normalizer

\[
N(h) = \{ g \in G | ghg^{-1} = h \}
\]

then we have just proved that \(S \subseteq N(h) \). The normalizer \(N(h) \) is a subgroup of \(G \), and since \(S \subseteq N(h) \) we have \(o(N(h)) > .5n \). By Lagrange’s theorem, we must in fact have \(N(h) = G \) since \(o(N(h)) | o(G) \). Thus any \(h \in H \) commutes with every \(g \in G \). This proves that \(H \subseteq Z \) the center of \(G \), but then \(o(Z) > .75n \) implies that \(Z = G \) again by Lagrange. This proves that \(G \) must be abelian. If \(x, y \in H \), then \(T(x) = x^{-1} \) and \(T(y) = y^{-1} \). Thus

\[
T(x^{-1}) = T(x)^{-1} = (x^{-1})^{-1} = x
\]

proving that \(H \) is closed under inverses. Now that we know \(G \) is abelian we can also say that

\[
T(xy) = T(x)T(y) = x^{-1}y^{-1} = y^{-1}x^{-1} = (xy)^{-1}
\]

proving that \(H \) is closed under multiplication. Thus \(H \) is actually a subgroup of \(G \), and since \(o(H) > .75n \) we must in fact have \(H = G \), proving that every \(x \in G \) satisfies \(T(x) = x^{-1} \).

It’s worth remarking that you can find non-abelian examples which have exactly three quarters of the...
elements map to their inverse. In homework 6 we introduced the quaternions

\[Q = \{ \pm 1, \pm i, \pm j, \pm k \} \]

which is a non-abelian group of order 8 where \(ij = k \) and \(i^2 = j^2 = k^2 = -1 \). There is an automorphism \(\varphi: Q \to Q \) mapping

\[\varphi(\pm 1) = \pm 1, \quad \varphi(\pm i) = \mp i, \quad \varphi(\pm j) = \mp j, \quad \varphi(\pm k) = \pm k. \]

This automorphism maps three quarters of the elements of \(Q \) to their inverses.

2. 2.8.14

Solution: We’ve already seen that any non-abelian group \(G \) has a non-trivial inner automorphism. Thus we suppose that \(G \) is abelian. If there exists \(x \in G \) with \(x \neq x^{-1} \) then certainly the map \(\varphi: G \to G \) taking \(\varphi(g) = g^{-1} \) is a non-trivial automorphism. Thus the only case to consider is what happens if every element in \(G \) has the property \(g^2 = e \).

Since \(G \) is finite there must exist a smallest positive integer \(k \) such that \(G = \langle a_1, a_2, \ldots, a_k \rangle \) where \(a_i \in G \). Certainly \(k \geq 2 \) since we are told that \(o(G) \geq 3 \). I claim that in this case \(o(G) = 2^k \). To prove this, define for any subset \(S \subseteq \{ 1, 2, \ldots, k \} \) the element of \(G \)

\[x_S = \prod_{i \in S} a_i \]

where \(x_\emptyset \) is the identity element. Notice that every element of \(G \) is equal to \(x_S \) for some subset \(S \). This shows that \(o(G) \leq 2^k \). To prove the other inequality we must show that if \(S \neq T \) then \(x_S \neq x_T \). This follows from minimality of \(k \). If \(S \neq T \) then there exists an \(i \) which is in one set but not the other. Assume without loss of generality that \(i \in S \) and \(i \notin T \). Assume for the sake of contradiction that \(x_S = x_T \). Then if \(P = (T \cup (S - \{i\})) - (T \cap (S - \{i\})) \) then we can rearrange the equation \(x_S = x_T \) to get

\[a_i = x_P. \]

Since \(i \notin P \), we see that \(G = \langle a_1, a_2, \ldots, a_{i-1}, a_{i+1}, \ldots, a_k \rangle \) which contradicts the minimality of \(k \). Thus each \(x_S \) is distinct and hence \(o(G) \geq 2^k \) proving equality.

Now define a function \(f: \{ 1, 2, \ldots, k \} \to \{ 1, 2, \ldots, k \} \) such that \(f(1) = 2, f(2) = 1, \) and \(f(r) = r \) for \(r \neq 1, 2 \). We use \(f \) to define a map \(\varphi: G \to G \) by \(\varphi(x_S) = x_{f(S)} \). Since \(f \) is a one-to-one correspondence, it has an inverse function \(f^{-1} \). Then the function \(\psi: G \to G \) defined by \(\psi(x_S) = x_{f^{-1}(S)} \) has the property that \(\varphi(\psi(x_S)) = \psi(\varphi(x_S)) = x_S \) proving that \(\varphi \) is a correspondence. All that remains is to check that \(\varphi \) is a homomorphism. To do so, notice that for sets \(S \) and \(T \) we have the formula

\[x_S x_T = x_{S \cup T - (S \cap T)}. \]

Thus

\[
\varphi(x_S x_T) = \varphi(x_{S \cup T - (S \cap T)}) \\
= x_{f(S \cup T - (S \cap T))} \\
= x_{f(S) \cup f(T) - (f(S) \cap f(T))} \\
= x_{f(S)} x_{f(T)} \\
= \varphi(x_S) \varphi(x_T).
\]

This proves that \(\varphi \) is an automorphism, and it is non-trivial since \(\varphi(a_1) \neq a_1 \).

3. 2.8.15
Solution: Let \(K = \{ x \in G | o(x) = 2 \} \). We are told that \(G \) is a disjoint union \(H = H \cup K \) where \(H \) is a subgroup of \(G \). Thus \(H \) has index 2 in \(G \) so surely it is a normal subgroup. Hence for any \(k \in K \) we get \(kHk^{-1} = H \). Thus if \(h \in H \), there exists \(\bar{h} \in H \) with \(h = \bar{h}k \). Notice that \(\bar{h} = h^{-1} \) which shows that \(h \in K \). This proves that any \(h \in H \) is of the form \(h = k\bar{h}k^{-1} \). Thus if \(h_1, h_2 \in H \) then

\[
h_1h_2 = (kh_1^{-1}k^{-1})(kh_2^{-1}k^{-1}) = k(h_1^{-1}h_2^{-1})k^{-1} = h_2h_1.
\]

This proves that \(H \) is abelian. To show that \(H \) has odd order, recall that in Herstein 2.3.11 we proved that any group of even order has an element of order 2. Since \(K \) consists of exactly those elements in \(G \) of order 2, the subgroup \(H \) must have odd order.

4. 2.8.16

Solution: Let \(m = a^n - 1 \) and let \(U_m = \{ [x] \in J_m | \gcd(x, m) = 1 \} \). Then we have seen that \(U_m \) is a group under multiplication, and by definition \(o(U_m) = \phi(m) \). Let’s compute \(o([a]) \) in \(U_m \). We know that \(a^n - 1 = m \) so \(a^n - 1 \equiv 0 \mod m \) or equivalently \(a^n \equiv 1 \mod m \). This shows that in \(U_m \), \([a]^n = [1] \) so that \(o([a]) \leq n \). Conversely, we know that \(a^{o([a])} = 1 \mod m \) so \(m \mid a^{o([a])} - 1 \) and \(m \leq a^{o([a])} - 1 \). Thus \(a^n \leq a^{o([a])} \) which shows that \(n \leq o([a]) \). Thus \(o([a]) = n \) and so Lagrange’s theorem tells us that \(n \mid o(U_m) = \phi(a^n - 1) \).