Solution to Problem 17.3. (a) \(f((-1,1)) = \{ \vert x \vert : -1 < x < 1 \} = [0,1); \)
(b) \(f(-1,1) = \{ \vert x \vert : x = -1 \ or \ x = 1 \} = \{1\}; \)
(c) \(f^{-1}(\{1\}) = \{ x \in \mathbb{R} : \vert x \vert = 1 \} = \{-1,1\}; \)
(d) \(f^{-1}([-1,0)) = \{ x \in \mathbb{R} : -1 \leq \vert x \vert < 0 \} = \emptyset; \)
(e) \(f^{-1}(f([0,1])) = f^{-1}(\{ x \in \mathbb{R} : 0 \leq \vert x \vert \leq 1 \}) = [\frac{-1}{4},\frac{1}{4}]; \)

Solution to Problem 17.6. (a) \(\chi_{\mathbb{Z}}(\mathbb{Z}^+) = \{ \chi_{\mathbb{Z}}(x) : x \in \mathbb{Z}^+ \} = \{1\}; \)
(b) \(\chi_{-1}^{-1}(\mathbb{Z}^+) = \{ x \in \mathbb{R} : \chi_{\mathbb{Z}}(x) \in \mathbb{Z}^+ \} = \{ x \in \mathbb{R} : \chi_{\mathbb{Z}}(x) = 1 \} = \mathbb{Z}; \)
(c) \(\chi_{\mathbb{Z}}(\chi_{-1}(\mathbb{Z}^+)) = \chi_{\mathbb{Z}}(\mathbb{Z}) = \{ \chi_{\mathbb{Z}}(x) : x \in \mathbb{Z} \} = \{1\}; \)
(d) \(\chi_{-1}^{-1}(\chi_{\mathbb{Z}}(\mathbb{Z}^+)) = \chi_{-1}^{-1}(\{1\}) = \{ x \in \mathbb{R} : \chi_{\mathbb{Z}}(x) = 1 \} = \mathbb{Z}. \)

Solution to Problem 17.9. We compute the answer using the definition of the image of a set. Now,
\[
 f(2\mathbb{Z}) = \{ f(x) : x \in 2\mathbb{Z} \} \\
 = \{ f(2m) : m \in \mathbb{Z} \} \\
 = \{ f(2m) : m \in \mathbb{Z} and m \leq 0 \} \cup \{ f(2m) : m \in \mathbb{Z} and m > 0 \} \\
 = \{ -4m : m \in \mathbb{Z} and m \leq 0 \} \cup \{ 4m - 1 : m \in \mathbb{Z} and m > 0 \} \\
 = 4\mathbb{N} \cup (4\mathbb{Z}^+ - 1) \\
 = 4\mathbb{N} \cup (4\mathbb{N} + 3).
\]
Solution to Problem 17.12. Proof. If \(z \in f(A_1 \cup A_2) \), then there is \(x \in A_1 \cup A_2 \) such that \(z = f(x) \). If \(x \in A_1 \), then \(z = f(x) \in f(A_1) \). If \(x \not\in A_1 \), then \(x \in A_2 \). In this case \(z = f(x) \in f(A_2) \). Thus in any case, \(z = f(x) \in f(A_1) \cup f(A_2) \). This shows that \(f(A_1 \cup A_2) \subseteq f(A_1) \cup f(A_2) \).

Conversely, if \(z \in f(A_1) \cup f(A_2) \), then \(z \in f(A_1) \) or \(z \in f(A_2) \). If \(z \in f(A_1) \), then there is \(x \in A_1 \subseteq A_1 \cup A_2 \) such that \(z = f(x) \). Otherwise \(z \in f(A_2) \) and again there is \(x \in A_2 \subseteq A_1 \cup A_2 \) such that \(z = f(x) \). Thus, we conclude that \(z \in f(A_1 \cup A_2) \). This shows that \(f(A_1) \cup f(A_2) \subseteq f(A_1 \cup A_2) \).

Therefore \(f(A_1 \cup A_2) = f(A_1) \cup f(A_2) \). □

Solution to Problem 17.15. Proof. If \(x \in f^{-1}(B_1 \cap B_2) \), then \(x \in X \) and \(f(x) \in B_1 \cap B_2 \). Thus \(x \in X \) and \(f(x) \in B_1 \). This shows that \(x \in f^{-1}(B_1) \). We also have \(x \in X \) and \(f(x) \in B_2 \). This shows that \(x \in f^{-1}(B_2) \). We conclude that \(x \in f^{-1}(B_1) \cap f^{-1}(B_2) \). Hence \(f^{-1}(B_1 \cap B_2) \subseteq f^{-1}(B_1) \cap f^{-1}(B_2) \).

Conversely, if \(x \in f^{-1}(B_1) \cap f^{-1}(B_2) \), then \(x \in f^{-1}(B_1) \) and \(x \in f^{-1}(B_2) \). Thus \(x \in X \), \(f(x) \in B_1 \), and \(f(x) \in B_2 \). This implies that \(f(x) \in B_1 \cap B_2 \). Hence \(x \in f^{-1}(B_1 \cap B_2) \). We have shown that \(f^{-1}(B_1) \cap f^{-1}(B_2) \subseteq f^{-1}(B_1 \cap B_2) \).

Thus \(f^{-1}(B_1) \cap f^{-1}(B_2) = f^{-1}(B_1 \cap B_2) \). □

Solution to Problem 17.18. (a) Proof. If \(z \in f(f^{-1}(B)) \), then there is \(x \in f^{-1}(B) \) such that \(z = f(x) \). Since \(x \in f^{-1}(B) \), we conclude that \(x \in X \) and \(f(x) \in B \). Hence \(z \in B \). This proves the set inclusion.

(b) We define \(f : \mathbb{R} \to \mathbb{R} \) by \(f(x) = e^x \). Then \(f(f^{-1}(\mathbb{R})) = f(\mathbb{R}) = \mathbb{R}^+ \neq \mathbb{R} \).

(c) We claim that if the function \(f : X \to Y \) is surjective, then \(f(f^{-1}(B)) = B \).

Proof. If \(b \in B \), then there is \(x \in X \) with \(f(x) = b \) because \(f \) is onto. Thus \(x \in f^{-1}(B) \). This shows that \(b = f(x) \in f(f^{-1}(B)) \). Hence \(B \subseteq f(f^{-1}(B)) \). The reverse inclusion was proven in part (a). Therefore the two sets are equal. □

(d) The example in part (b) shows that the two sets may not be equal even if the function \(f : X \to Y \) is injective.

Solution to Problem 17.21. Since partitions are only defined for nonempty sets, we may assume that \(A \neq \emptyset \). This implies that \(B \neq \emptyset \).

Let \(b \in B \). Since the function \(f \) is onto, there exists \(a \in A \) such that \(f(a) = b \). Thus \(a \in f^{-1}(\{b\}) \). This shows that \(f^{-1}(\{b\}) \neq \emptyset \) for all \(b \in B \).

If \(a \in A \), then \(f(a) = b \in B \). Thus \(a \in f^{-1}(\{b\}) \) for \(b = f(a) \). Thus \(a \in \bigcup_{b \in B} f^{-1}(\{b\}) \). The reverse inclusion is trivial, thus \(\bigcup_{b \in B} f^{-1}(\{b\}) = A \).
Let \(f^{-1}(\{b\}) \cap f^{-1}(\{c\}) \neq \emptyset \) for some \(b, c \in B \). Hence there exists \(x \in f^{-1}(\{b\}) \cap f^{-1}(\{c\}) \). Since \(x \in f^{-1}(\{b\}) \), we have \(f(x) = b \). Also, \(x \in f^{-1}(\{c\}) \) and thus \(f(x) = c \). We conclude that \(b = c \). Hence \(f^{-1}(\{b\}) = f^{-1}(\{c\}) \).

We have thus shown that \(\{ f^{-1}(\{b\}) : b \in B \} \) partitions \(A \).

Solution to Problem 17.24.

(a) We claim that \(\chi_{A_1} = \chi_{A_2} \) implies \(A_1 = A_2 \). If \(x \in A_1 \), then \(\chi_{A_1}(x) = 1 \). Hence \(\chi_{A_2}(x) = 1 \). Thus \(x \in A_2 \). We have shown that \(A_1 \subseteq A_2 \). The reverse inclusion can be handled using the same argument, and the claim is then proven.

(b) If \(x \in X \), then \(x \in A_1 \cap A_2 \) or \(x \notin A_1 \cap A_2 \). In the first case, \(x \in A_1 \) and \(x \in A_2 \). Hence \(\chi_{A_1}(x) = \chi_{A_2}(x) = 1 \). In this case, \(\chi_{A_1}(x) \cdot \chi_{A_2}(x) = 1 \cdot 1 = 1 = \chi_{A_1 \cap A_2}(x) \).

In the second case \(x \notin A_1 \) or \(x \notin A_2 \). Thus \(\chi_{A_1}(x) = 0 \) or \(\chi_{A_2}(x) = 0 \). This implies that \(\chi_{A_1}(x) \cdot \chi_{A_2}(x) = 0 = \chi_{A_1 \cap A_2}(x) \).

We have shown that for all \(x \in X \), we have \(\chi_{A_1}(x) \cdot \chi_{A_2}(x) = \chi_{A_1 \cap A_2}(x) \). Hence \(\chi_{A_1} \cdot \chi_{A_2} = \chi_{A_1 \cap A_2} \).

(c) We break the proof into four cases: 1) \(x \notin A_1 \cup A_2 \), 2) \(x \in A_1 \ \setminus \ A_2 \), 3) \(x \in A_2 \ \setminus \ A_1 \), or 4) \(x \in A_1 \cap A_2 \). Note that every element of \(X \) is in exactly one of the four cases. There are sets \(A_1 \) and \(A_2 \) for which some of the cases do not occur (the corresponding sets are empty).

It is now easy to check that in all four cases \(\chi_{A_1}(x) + \chi_{A_2}(x) - \chi_{A_1 \cap A_2}(x) = \chi_{A_1 \cup A_2}(x) \). This proves the formula.

(d) Using the formula from part (c) and noticing that \((X \ \setminus \ A_1) \cup A_1 = X \), \((X \ \setminus \ A_1) \cap A_1 = \emptyset \), \(\chi_X = 1 \), and \(\chi_{\emptyset} = 0 \), it is straightforward to check that \(\chi_X \ \setminus A_1 = 1 - \chi_{A_1} \).